
CMake	Tutorial

	JohnLamp.net

Copyright	©	2017	John	Lamp.

3
4

14
38
48
57
67

Table of Contents
Introduction
Chapter 1: Getting Started
Chapter 2: IDE Integration
Chapter 3: GUI Tool
Chapter 4: Libraries and Subdirectories
Chapter 5: Functionally Improved Testing
Chapter 6: Realistically Getting a Boost

Introduction
What	is	CMake?

According	to	CMake's	creators,	Kitware,	CMake	is	an	open-source	cross	platform	build	system.	This	is	not
completely	accurate	as	CMake	is	not	actually	a	build	system.	What	CMake	provides	is	an	easy	way	to	build	C/C++
projects	across	platforms.	The	reason	I	say	that	CMake	isn't	a	build	system	is	because	it	doesn't	actually	build
software.	"A	build	system	that	doesn't	build	software?"	you	ask.	Yes;	what	CMake	does	is	generate	a	configuration
for	your	existing	build	system,	e.g.	Make.	This	allows	CMake	to	focus	on	things	that	most	build	systems	don't;	such
as	cross	platform	configuration,	dependency	calculation,	testing,	packaging,	and	installation.

Why	CMake?
By	not	being	a	true	build	system,	per	se,	CMake	allows	for	a	more	flexible	development	environment	as	it	can
generate	Makefiles	or	projects	for	a	variety	of	IDEs.	This	allows	developers	to	easily	work	on	different	platforms
using	different	tools	since	one	can	build	using	Microsoft's	Visual	Studio	on	Windows	or	with	GNU	Make	on	Linux
just	as	easily.

CMake	also	includes	tools	for	finding	libraries,	e.g.	boost,	and	the	ability	to	easily	include	external	projects	in	your
build.	These	two	features,	in	particular,	make	it	much	simpler	to	build	projects	that	have	external	dependencies	and
by	using	the	find	tools	rather	than	hard	coding	paths	it	is	much	easier	for	new	developers	to	get	started	on	an
existing	project.

Included	with	CMake	is	CTest,	a	test	driver	program.	Both	work	together	to	make	it	easy	to	run	a	project's	test
programs	and/or	scripts.	When	you	configure	your	project	you	specify	how	to	run	your	tests	and	CMake	generates	a
configuration	for	CTest.	CTest	will	run	all	of	your	tests	and	provide	a	summary	of	which	ones	passed	and	which
ones	failed.	In	addition	it	logs	the	output	of	all	the	tests	it	ran.	Optionally	CTest	can	be	directed	to	run	only	specific
tests	or	skip	specific	tests,	perhaps	the	slow	ones.	While	it	may	not	be	a	continuous	build	system	you	have	most	of
the	components	provided.

In	addition	to	setting	up	a	build	CMake	can	also	create	an	install	target	that	will	install	the	outputs	of	your	project	in
the	appropriate	locations.	Once	you	have	configured	your	project	to	be	installed	you	can	also	package	your	project
using	the	included	CPack	utility.	A	variety	of	packages	can	be	created	including	tar	files,	zip	files,	or	an	installer.

Acknowledgements
I	would	like	to	thank	the	following	people	for	their	help	and	contributions	to	this	tutorial.	Without	them	it	would	not
exist.

Devin	Ronge

This	tutorial	would	not	exist	without	Devin,	he	suggested	I	write	it	and	motivated	me	to	start.	Despite	being
primarily	a	C#	and	JavaScript	developer	Devin	has	read	every	word	of	this	tutorial	at	least	once.	Thanks	to
him	you	get	a	better	written	tutorial	than	you	would	had	he	not	proof-read	it	first.

Steve	Rieman

As	a	C++	developer	who	actively	uses	CMake	Steve	has	provided	a	technical	review	of	the	sample	code	in
addition	to	a	review	of	the	prose.	He	has	also	provided	numerous	ideas	for	the	contents	of	this	tutorial.

CMake Tutorial

3 Introduction

http://devin.ronge.name/

Chapter	1:	Getting	Started
Introduction

In	this	chapter	we	start	by	installing	CMake.	Like	most	open	source	software	the	best	way	to	do	this	depends	on
your	platform	and	how	you	usually	do	things.	Once	we	have	CMake	installed	we	create	a	simple	project.	Perhaps
it's	a	little	fancier	than	"hello	world"	but	not	much.	We	finish	up	with	the	test	support	built	into	CMake.

I	won't	cover	any	particular	aspect	of	CMake	in	great	detail	yet.	That	will	be	left	for	future	chapters.	However,	after
this	chapter	you	will	know	enough	to	build	simple	programs	with	CMake	and	run	simple	tests	with	CTest.

Installation
Windows
Download	and	Install

Download	the	installer	from	the	CMake	website	(2012-06-02).	Run	the	installer	and	follow	its	steps.	Be	sure	to	add
CMake	to	the	system	PATH	so	that	you	can	use	it	from	the	command	line.	Add	it	for	the	current	or	all	users	as
appropriate.

This	provides	both	the	cmake	command	and	the	CMake	GUI	(cmake-gui)	but	not	the	curses	interface	(ccmake).

Cygwin
CMake	can,	of	course,	be	installed	as	part	of	Cygwin.	Even	if	you	don't	already	have	Cygwin	installed	you	may
want	to	as	it	provides	a	Linux-like	environment	natively	in	Windows.	This	way	common	Linux	tools	and	utilities
can	be	available.	Also	most	of	this	tutorial	is	done	in	a	Linux-like	environment,	so	with	Cygwin	installed	it	will	be
easier	to	follow	along.

Download	Cygwin's	setup.exe	from	their	website	(2012-06-02).	Run	setup.exe.	Follow	its	steps	until	you	can	select
packages,	then	either	chose	to	install	all	packages	or	just	CMake.	To	install	all	packages	click	the	word	"Default"
next	to	"All"	until	it	reads	"Install".	If	you	don't	want	to	install	everything	click	the	word	"Default"	next	to	"Devel"
until	it	reads	"Install";	this	will	install	just	the	development	tools.	If	you	chose	to	install	all	packages	the	install	will
take	a	a	few	hours,	but	even	just	installing	the	development	tools	will	take	at	least	half	an	hour.	After	the	installer
has	finished	the	Cygwin	environment	can	then	be	accessed	via	the	Cygwin Terminal	which	can	be	found	in	the	Start
Menu.

This	provides	the	cmake	command	and	the	curses	interface	(ccmake)	but	not	the	CMake	GUI.

Mac	OS	X
Download	and	Install

Download	the	disk	image	from	the	CMake	website	(2012-06-02).	Pick	the	correct	download	for	whichever	version	of
OS	X	you	are	using.	Use	the	installer	and	follow	its	directions.	It	will	ask	if	you	want	it	to	make	the	command	line
tools	available	in	your	path	by	creating	symbolic	links,	have	it	do	so.

This	provides	the	cmake	command,	the	CMake	GUI	(CMake.app),	and	the	curses	interface	(ccmake).

Homebrew
If	you	already	have	homebrew	installed	you	can	simply	install	CMake	with	the	command	brew install cmake.

This	provides	the	cmake	command	and	the	curses	interface	(ccmake)	but	not	the	CMake	GUI.

Linux
Ubuntu	(Debian)

The	simplest	way	to	install	CMake	is	via	the	command	line:	sudo apt-get install cmake.	However,	searching	for
CMake	in	the	Ubuntu	Software	Center	or	in	the	Synaptic	Package	Manager,	depending	upon	your	Ubuntu	version,
will	find	the	cmake	package.	If	your	Ubuntu	install	doesn't	include	X	or	you	primarily	use	ssh	sessions	you	will	also
want	to	install	the	cmake-curses-gui	package.	Again	this	is	simplest	with	the	command
sudo apt-get install cmake-curses-gui,	but	either	GUI	interface	can	be	used	instead.

CMake Tutorial

4 Chapter 1: Getting Started

http://www.cmake.org/cmake/resources/software.html
http://www.cygwin.com/install.html
http://www.cmake.org/cmake/resources/software.html

CMakeLists.txt

This	provides	the	cmake	command	and	the	CMake	GUI	(cmake-gui).	The	second,	optional,	package	provides	the	curses
interface	(ccmake).

Red	Hat/CentOS
To	install	CMake	via	the	command	line	is	straightforward.	First	use	yum search cmake	to	find	the	correct	package	to
install.	On	a	64	bit	install	it	would	be	cmake.x86_64.	Use	whichever	package	your	search	found	when	installing:
sudo yum install cmake.x86_64.	If	sudo	is	not	setup	use	su	first	and	then	run	yum install cmake.x86_64.

This	provides	the	cmake	command	and	the	curses	interface	(ccmake),	but	not	the	CMake	GUI.

Fedora
Either	the	command	line	or	the	Add/Remove	Software	GUI	can	be	used.	In	the	GUI	simply	search	for	cmake	and
install	at	least	the	cmake	module.	If	you	desire	the	CMake	GUI	as	well	install	the	cmake-gui	module.	From	the
command	line	use	sudo yum install cmake	and	sudo yum install cmake-gui,	if	you	desire	the	GUI	as	well.

This	provides	the	cmake	command	and	the	curses	interface	(ccmake).	The	second,	optional,	package	provides	the
CMake	GUI	(cmake-gui).

Source

As	CMake	is	an	open	source	tool	you	can,	of	course,	download	the	source	code	and	build	it	yourself.	However,	that
is	outside	the	scope	of	this	tutorial.

Hands	On
For	this	tutorial	we	will	create	a	To	Do	List	program.	Naturally	our	focus	will	be	on	CMake	more	than	the	actual
code	and	its	functionality.	Most	examples	will	be	done	using	the	command	line	generating	Makefiles.	CMake	can
be	used	with	a	GUI	(chapter	3)	and	also	generate	projects	for	many	IDEs	(chapter	2).

Diving	In
Just	as	any	IDE	has	project	files	or	Make	has	Makefiles	CMake	has	CmakeLists.txt	files.	These	describe	your	project
to	CMake	and	affect	its	output.	They	are	fairly	simple	especially	compared	to	Makefiles.	Here's	our	first
CMakelists.txt:

1∞project("To Do List")

2∞

3∞

4∞add_executable(toDo main.cc

5∞ ToDo.cc)

project(name)

The	project	command	names	your	project.	Optionally	you	can	specify	what	language	the	project	supports,
any	of	CXX,	C,	JAVA,	or	FORTRAN.	CMake	defaults	to	C	and	CXX	so	if	you	do	not	have	compilers	for	C++	installed
you	may	need	to	specify	the	language	supported	so	that	CMake	doesn't	search	for	it.

Note:	If	your	project	name	contains	spaces	it	must	be	surrounded	by	quotes.

project()	documentation	(2013-03-26)
add_executable(target sources…)

This	command	tells	CMake	you	want	to	make	an	executable	and	adds	it	as	a	target.	The	first	argument	is	the
name	of	the	executable	and	the	rest	are	the	source	files.	You	may	notice	that	header	files	aren't	listed.
CMake	handles	dependencies	automatically	so	headers	don't	need	to	be	listed.

add_executable()	documentation	(2013-03-26)

Of	course	we	need	some	source	code	to	build,	so	we	will	start	with	the	simplest	skeleton	possible:

CMake Tutorial

5 Chapter 1: Getting Started

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:project
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_executable

main.cc

ToDo.h

ToDo.cc

1∞#include "ToDo.h"

2∞

3∞int main(

4∞ int argc,

5∞ char** argv

6∞)

7∞{

8∞ ToDo list;

9∞

10∞ return 0;

11∞}

1∞#ifndef TODO_H

2∞#define TODO_H

3∞

4∞class ToDo

5∞{

6∞public:

7∞ ToDo();

8∞ ~ToDo();

9∞};

10∞

11∞#endif // TODO_H

1∞#include "ToDo.h"

2∞

3∞

4∞ToDo::ToDo()

5∞{

6∞}

7∞

8∞ToDo::~ToDo()

9∞{

10∞}

CMake's	documentation	strongly	suggests	that	out-of-source	builds	be	done	rather	than	in-source	builds.	I	agree	as
it	makes	it	much	easier	to	convince	yourself	that	your	build	has	really	been	cleaned	since	you	can	simply	delete	the
build	folder	and	start	over.	Building	with	CMake	is	actually	rather	simple,	so	we	will	charge	ahead:

CMake Tutorial

6 Chapter 1: Getting Started

 > mkdir build

 > cd build

 > cmake -G "Unix Makefiles" ..

-- The C compiler identification is GNU 4.2.1

-- The CXX compiler identification is GNU 4.2.1

-- Checking whether C compiler has -isysroot

-- Checking whether C compiler has -isysroot - yes

-- Checking whether C compiler supports OSX deployment target flag

-- Checking whether C compiler supports OSX deployment target flag - yes

-- Check for working C compiler: /usr/bin/gcc

-- Check for working C compiler: /usr/bin/gcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Checking whether CXX compiler has -isysroot

-- Checking whether CXX compiler has -isysroot - yes

-- Checking whether CXX compiler supports OSX deployment target flag

-- Checking whether CXX compiler supports OSX deployment target flag - yes

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: /Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build

 > ls

CMakeCache.txt Makefile

CMakeFiles cmake_install.cmake

 > make

Scanning dependencies of target toDo

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

[100%] Building CXX object CMakeFiles/toDo.dir/ToDo.cc.o

Linking CXX executable toDo

[100%] Built target toDo

Note:	If	you	are	using	Cygwin	you	may	see	a	warning.	Don't	worry	about	it,	we	will	take	care	of	that	shortly.

mkdir build

Create	the	directory	in	which	to	build	our	application.	In	this	example	it	is	a	subdirectory	of	our	source
directory,	but	it	could	be	anywhere.	With	our	build	happening	outside	of	the	source	tree	we	can	easily	clean
up	by	simply	removing	the	build	directory.

cd build

Change	into	the	build	directory	to	work	from	there.

cmake -G "Unix Makefiles" ..

Use	CMake	to	setup	a	build	using	Unix	Makefiles.
-G <generator name>

This	allows	us	to	tell	CMake	what	kind	of	project	file	it	should	generate.	In	this	example	I
wanted	to	use	a	Makefile.	Which	generators	are	available	depends	on	your	platform,	use
cmake --help	to	list	them.	Other	generators	will	be	covered	in	the	next	chapter.

<path to source>

The	path	to	the	source	code.	When	doing	out-of-source	builds	as	is	recommended	the	source
code	could	be	anywhere	relative	to	the	build	directory.	This	path	should	be	to	the	directory
containing	your	top	level	CMakeLists.txt.	In	this	example	the	source	is	in	the	parent	directory	so
the	path	is	'..'.

ls

CMake	generates	several	files	which	should	not	be	edited	by	hand.	Makefile	is	the	most	important	one	to	us
as	we	use	it	to	build	our	project.	CMakeCache.txt	is	important	to	CMake	as	it	stores	a	variety	of	information
and	settings	for	the	project.	Again	you	shouldn't	touch	this,	however	if	unexpected	problems	arise	this	file
probably	is	the	cause;	the	best	option	then	is	to	delete	your	build	folder	and	have	CMake	regenerate.

make

CMake Tutorial

7 Chapter 1: Getting Started

CMakeLists.txt New or modified lines in bold.

Run	make	to	build	our	target	executable.	Since	we	chose	"Unix	Makefiles"	as	our	generator	CMake	created	a
Makefile	for	us.

CMake	does	all	the	hard	work	of	making	sure	your	environment	has	everything	you	need	and	sets	up	a	project	file,
in	this	case	a	Makefile.	You	will	notice	that	the	Makefile	created	by	CMake	is	quite	fancy	and	has	nice	color	output.
If	you	are	used	to	Make	you	will	notice	that	this	Makefile	suppresses	the	standard	output.	While	this	provides	a
neater	and	cleaner	experience	it	can	make	debugging	more	difficult	as	you	can't	check	the	flags	passed	to	the
compiler,	etc.	Before	you	start	worrying	you	can	get	all	of	that	output	by	running	make VERBOSE=1.

 > cd build

 > make VERBOSE=1

/usr/local/Cellar/cmake/2.8.8/bin/cmake -H"/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1" -B"/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build" --check-build-system CMakeFiles/Makefile.cmake 0

/usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_progress_start "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles" "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles/progress.marks"

make -f CMakeFiles/Makefile2 all

make -f CMakeFiles/toDo.dir/build.make CMakeFiles/toDo.dir/depend

cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build" && /usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_depends "Unix Makefiles" "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1" "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1" "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build" "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build" "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles/toDo.dir/DependInfo.cmake" --color=

Dependee "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles/toDo.dir/DependInfo.cmake" is newer than depender "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles/toDo.dir/depend.internal".

Dependee "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles/CMakeDirectoryInformation.cmake" is newer than depender "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles/toDo.dir/depend.internal".

Scanning dependencies of target toDo

make -f CMakeFiles/toDo.dir/build.make CMakeFiles/toDo.dir/build

/usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_progress_report "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles" 1

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

/usr/bin/c++ -o CMakeFiles/toDo.dir/main.cc.o -c "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/main.cc"

/usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_progress_report "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles" 2

[100%] Building CXX object CMakeFiles/toDo.dir/ToDo.cc.o

/usr/bin/c++ -o CMakeFiles/toDo.dir/ToDo.cc.o -c "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/ToDo.cc"

Linking CXX executable toDo

/usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_link_script CMakeFiles/toDo.dir/link.txt --verbose=1

/usr/bin/c++ -Wl,-search_paths_first -Wl,-headerpad_max_install_names CMakeFiles/toDo.dir/main.cc.o CMakeFiles/toDo.dir/ToDo.cc.o -o toDo

/usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_progress_report "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles" 1 2

[100%] Built target toDo

/usr/local/Cellar/cmake/2.8.8/bin/cmake -E cmake_progress_start "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step1/build/CMakeFiles" 0

You	can	see	that	the	makefile	created	by	CMake	is	very	precise	and	detailed.	As	such	if	anything	moves	you	will
have	to	run	cmake	again.

Simple	Improvements

1∞cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

2∞set(CMAKE_LEGACY_CYGWIN_WIN32 0)

3∞

4∞project("To Do List")

5∞

6∞enable_testing()

7∞

8∞

9∞add_executable(toDo main.cc

10∞ ToDo.cc)

11∞

12∞add_test(toDoTest toDo)

cmake_minimum_required(VERSION version [FATAL_ERROR])

This	command	specifies	the	minimum	version	of	CMake	that	can	be	used	with	CMakeLists.txt	file.	The	first
argument	must	be	VERSION	verbatim.	The	next	is	the	minimum	version	of	CMake	that	can	be	used.	The	last	is
optional,	but	should	be	included,	it	must	be	FATAL_ERROR	verbatim.	It	is	recommended	that	this	command	be
used	in	all	top	level	CMakeLists.txt.	If	you	aren't	sure	what	version	to	set	use	the	version	of	CMake	you	have
installed.

cmake_minimum_required()	documentation	(2013-03-26)
set(CMAKE_LEGACY_CYGWIN_WIN32 0)

This	gets	rid	of	the	warning	you	would	have	seen	earlier	if	you	were	using	Cygwin.	If	you	aren't	using
Cygwin	then	it	has	no	effect	at	all.

CMake Tutorial

8 Chapter 1: Getting Started

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:cmake_minimum_required

main.cc New or modified lines in bold.

This	tells	CMake	not	to	define	WIN32	when	building	with	Cygwin.	This	is	the	preferred	option	and	for	us	it
doesn't	make	a	difference	either	way	so	we	will	use	the	recommended	setting.

enable_testing()

Enables	testing	for	this	CMake	project.	This	should	only	be	used	in	top	level	CMakeLists.txt.	The	main	thing
this	does	is	enable	the	add_test()	command.

enable_testing()	documentation	(2013-03-26)
add_test(testname executable [arg1 ...])

This	command	only	does	something	if	the	enable_testing()	has	already	been	run,	otherwise	it	does	nothing.
This	adds	a	test	to	the	current	directory	that	will	be	run	by	CTest.	The	executable	can	be	anything,	so	it
could	be	a	test	program,	e.g.	a	unit	test	created	with	something	like	Google	Test,	a	script,	or	any	other	test
imaginable.	Note:	Tests	are	not	run	automatically	and	if	your	test	program	is	built	as	part	of	your	project	the
test	target	will	not	ensure	it	is	up	to	date.	It	is	best	to	build	all	other	targets	before	running	the	test	target.

add_test()	documentation	(2013-03-26)

Perhaps	I	lied.	One	can	easily	argue	that	introducing	the	add_test()	command	is	not	a	simple	improvement.	And	they
would	probably	be	right,	however,	it	is	an	important	improvement.	Testing	will	be	explored	further	later	in	this
tutorial.

Naturally	we	need	some	more	code	to	go	with	this,	so	here	goes:

1∞#include <iostream>

2∞ using std::cerr;

3∞ using std::cout;

4∞ using std::endl;

5∞

6∞#include "ToDo.h"

7∞

8∞#define EXPECT_EQUAL(test, expect) equalityTest(test, expect, \

9∞ #test, #expect, \

10∞ __FILE__, __LINE__)

11∞

12∞template < typename T1, typename T2 >

13∞int equalityTest(const T1 testValue,

14∞ const T2 expectedValue,

15∞ const char* testName,

16∞ const char* expectedName,

17∞ const char* fileName,

18∞ const int lineNumber);

19∞

20∞

21∞int main(

22∞ int argc,

23∞ char** argv

24∞)

25∞{

26∞ int result = 0;

27∞

28∞ ToDo list;

29∞

30∞ list.addTask("write code");

31∞ list.addTask("compile");

32∞ list.addTask("test");

33∞

34∞ result |= EXPECT_EQUAL(list.size(), 3);

35∞ result |= EXPECT_EQUAL(list.getTask(0), "write code");

36∞ result |= EXPECT_EQUAL(list.getTask(1), "compile");

37∞ result |= EXPECT_EQUAL(list.getTask(2), "test");

38∞

39∞ if (result == 0)

40∞ {

41∞ cout << "Test passed" << endl;

42∞ }

43∞

CMake Tutorial

9 Chapter 1: Getting Started

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:enable_testing
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_test

ToDo.h New or modified lines in bold.

43∞

44∞ return result;

45∞}

46∞

47∞

48∞template < typename T1, typename T2 >

49∞int equalityTest(

50∞ const T1 testValue,

51∞ const T2 expectedValue,

52∞ const char* testName,

53∞ const char* expectedName,

54∞ const char* fileName,

55∞ const int lineNumber

56∞)

57∞{

58∞ if (testValue != expectedValue)

59∞ {

60∞ cerr << fileName << ":" << lineNumber << ": "

61∞ << "Expected " << testName << " "

62∞ << "to equal " << expectedName << " (" << expectedValue << ") "

63∞ << "but it was (" << testValue << ")" << endl;

64∞

65∞ return 1;

66∞ }

67∞ else

68∞ {

69∞ return 0;

70∞ }

71∞}

1∞#ifndef TODO_H

2∞#define TODO_H

3∞

4∞#include <string>

5∞#include <vector>

6∞

7∞

8∞class ToDo

9∞{

10∞public:

11∞ ToDo();

12∞ ~ToDo();

13∞

14∞ size_t size() const;

15∞

16∞ void addTask(const std::string& task);

17∞ std::string getTask(size_t index) const;

18∞

19∞private:

20∞ std::vector< std::string > this_tasks;

21∞};

22∞

23∞#endif // TODO_H

CMake Tutorial

10 Chapter 1: Getting Started

ToDo.cc New or modified lines in bold.

1∞#include "ToDo.h"

2∞

3∞

4∞ToDo::ToDo()

5∞{

6∞}

7∞

8∞ToDo::~ToDo()

9∞{

10∞}

11∞

12∞

13∞size_t ToDo::size() const

14∞{

15∞ return this_tasks.size();

16∞}

17∞

18∞

19∞void ToDo::addTask(

20∞ const std::string& task

21∞)

22∞{

23∞ this_tasks.push_back(task);

24∞}

25∞

26∞std::string ToDo::getTask(

27∞ size_t index

28∞) const

29∞{

30∞ if (index < this_tasks.size())

31∞ {

32∞ return this_tasks[index];

33∞ }

34∞ else

35∞ {

36∞ return "";

37∞ }

38∞}

Whew!	That	was	not	simple	at	all.	Hopefully	some	of	you	are	wondering	why	I	didn't	use	a	test	framework.	Later
we	will,	but	had	we	done	so	now	we	would	have	gotten	further	ahead	of	ourselves	than	we	already	have.

Building	is	exactly	the	same	as	before.	In	fact	if	you	modified	the	files	you	had	used	before	you	simply	need	to	run
make	again.	The	Makefile	created	by	CMake	will	automatically	run	cmake	again	if	you	modify	your	CMakeLists.txt.	So
let's	run	our	test:

CMake Tutorial

11 Chapter 1: Getting Started

 > mkdir build

 > cd build

 > cmake -G "Unix Makefiles" ..

-- The C compiler identification is GNU 4.2.1

-- The CXX compiler identification is GNU 4.2.1

-- Checking whether C compiler has -isysroot

-- Checking whether C compiler has -isysroot - yes

-- Checking whether C compiler supports OSX deployment target flag

-- Checking whether C compiler supports OSX deployment target flag - yes

-- Check for working C compiler: /usr/bin/gcc

-- Check for working C compiler: /usr/bin/gcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Checking whether CXX compiler has -isysroot

-- Checking whether CXX compiler has -isysroot - yes

-- Checking whether CXX compiler supports OSX deployment target flag

-- Checking whether CXX compiler supports OSX deployment target flag - yes

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: /Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/build

 > make

Scanning dependencies of target toDo

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

[100%] Building CXX object CMakeFiles/toDo.dir/ToDo.cc.o

Linking CXX executable toDo

[100%] Built target toDo

 > make test

Running tests...

Test project /Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/build

 Start 1: toDoTest

1/1 Test #1: toDoTest Passed 0.01 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.03 sec

 > ls Testing

Temporary

 > ls Testing/Temporary

CTestCostData.txt LastTest.log

 > cat Testing/Temporary/LastTest.log

Start testing: Jul 16 22:00 EDT

--

1/1 Testing: toDoTest

1/1 Test: toDoTest

Command: "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/build/toDo"

Directory: /Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/build

"toDoTest" start time: Jul 16 22:00 EDT

Output:

--

Test passed

<end of output>

Test time = 0.01 sec

--

Test Passed.

"toDoTest" end time: Jul 16 22:00 EDT

"toDoTest" time elapsed: 00:00:00

--

End testing: Jul 16 22:00 EDT

 > cat Testing/Temporary/CTestCostData.txt

toDoTest 1 0.00976491

As	mentioned	earlier	building	with	CMake	is	the	same	as	it	was	before.

make test

The	enable_testing()	function	we	added	to	our	CMakeLists.txt	adds	the	"test"	target	to	our	Makefile.	Making
the	"test"	target	will	run	CTest	which	will,	in	turn,	run	all	of	our	tests.	In	our	case	just	the	one.

CMake Tutorial

12 Chapter 1: Getting Started

When	CTest	runs	our	tests	it	prints	an	abbreviated	output	that	just	provides	the	status	of	each	of	our	tests.	It
then	finishes	up	with	a	summary	of	all	tests.

Testing/Temporary/LastTest.log

This	file	is	created	by	CTest	whenever	it	is	run.	It	contains	much	more	detail	than	the	terminal	output	of
CTest	shows.	Most	importantly	it	contains	the	output	of	the	tests.	This	is	where	you	will	want	to	look
whenever	a	test	fails.

Testing/Temporary/CTestCostData.txt

This	file	contains	the	time,	in	seconds,	taken	to	run	each	test.

CMake	along	with	CTest	makes	it	easy	to	run	our	tests.	CTest	has	many	other	features	which	will	be	presented	later
in	this	tutorial.	There	are,	however,	a	few	drawbacks	to	running	our	tests	this	way	but	we	will	leave	those	for	later,
too.

CMake Tutorial

13 Chapter 1: Getting Started

Chapter	2:	IDE	Integration
Introduction

Now	that	we	are	familiar	with	CMake	I	will	make	good	on	CMake's	promise	of	flexibility.	I	said	before	that	CMake
could	create	projects	for	various	IDE's	and	in	this	chapter	we	will	do	so.	This	is	one	of	CMake's	greatest	strengths
as	it	allows	for	very	diverse	development	environments	while	working	on	the	same	project.	It	also	makes	it	possible
for	you	to	take	advantage	of	all	available	tools.	If,	for	example,	you	prefer	to	work	in	Emacs	or	Vim	and	build	with
Make	you	could	still	create	an	IDE	project	and	take	advantage	of	its	refactoring	tools.

By	now	some	of	you	have	looked	at	the	scroll	bar	and	noticed	that	this	chapter	is	rather	long.	Don't	worry	I	don't
expect	you	to	read	all	of	it	and	there	are	a	lot	of	pictures.	I	present	several	IDEs	but	assume	that	you	will	only	read
the	ones	that	are	useful	to	you.

Please	remember	that	CMake	has	more	generators	than	those	presented	here.	To	list	all	of	the	available	generators
for	your	install	use	the	command	cmake --help.	Most	available	generators	are	listed	in	the	CMake	documentation
(2012-07-08).

We	will	use	the	same	code	as	we	had	at	the	end	of	the	first	chapter.	It	can	be	downloaded	again	here:

Visual	Studio
Visual	Studio	2010	Express	Version	10.0.30319.1	RTMTel	was	used.	
Visual	Studio	2010	Professional	Version	10.0.30319.1	RTMRel	was	used	for	MSBuild

Generating	a	Visual	Studio	solution	is	simple,	we	just	have	to	use	a	Visual	Studio	generator	when	we	invoke
CMake.

 > mkdir visualStudio

 > cd visualStudio

 > cmake -G "Visual Studio 10" ..

-- Check for working C compiler using: Visual Studio 10

-- Check for working C compiler using: Visual Studio 10 -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler using: Visual Studio 10

-- Check for working CXX compiler using: Visual Studio 10 -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio

It	is	important	to	note	that	there	are	different	generators	for	different	versions	of	Visual	Studio,	so	you	will	have	to
make	sure	that	you	chose	the	generator	most	appropriate	for	your	Visual	Studio	install.	CMake's	output	is	actually	a
lot	shorter	than	when	we	first	ran	it.	You	will	notice	that	CMake	uses	Visual	Studio	to	compile	rather	than
interacting	directly	with	the	compiler.

Of	course	we	still	did	an	out-of-source	build	so	the	Visual	Studio	project	files	will	not	clutter	your	source	tree.	This
is	what	CMake	created:

CMake Tutorial

14 Chapter 2: IDE Integration

http://www.cmake.org/cmake/help/v2.8.8/cmake.html#section_Generators

As	you	can	see	CMake	created	several	Visual	Studio	files.	The	one	we	really	care	about	is	To Do List.sln,	as	you	can
see	this	is	named	after	our	CMake	project.	If	file	names	containing	spaces	cause	problems	for	you,	or	are
inconvenient,	then	you	will	want	to	make	sure	your	project	names	do	not	contain	spaces.	Let's	see	what	kind	of
solution	CMake	created.

Note:	When	you	open	the	solution	Visual	Studio	may	display	a	Security	Warning	because	it	doesn't	trust	the
projects.	This	seems	to	be	caused	by	CMake	creating	them	not	Visual	Studio.	You	can	just	click	"OK".

CMake Tutorial

15 Chapter 2: IDE Integration

The	generated	solution	is	a	bit	more	complicated	than	what	you	would	have	created	by	hand.	There	are	3	more
projects	than	you	would	have	expected	since	we	are	only	building	one	executable	and	nothing	else.	Each	project
does,	however,	have	a	purpose:

ALL_BUILD

This	project	builds	all	of	the	targets	that	are	defined	in	the	CMakeLists.txt.	Since	we	only	have	one	in	ours	it
is	a	bit	redundant.

RUN_TESTS

Building	this	project	runs	CTest	in	much	the	same	way	that	make test	did.	It	creates	the	same	output	files,
too.	CTest's	output	is	also	displayed	in	the	Output	Window.	Just	as	before	this	does	not	depend	on	any	of
your	targets,	so	if	your	tests	depend	on	any	targets	be	sure	to	build	them	first.

toDo

This	is	the	little	command	line	tool	we	are	building.	It	corresponds	to	the	add_executable	command	we	have
in	our	CMakeLists.txt.

ZERO_CHECK

This	is	a	rather	oddly	named	project.	It's	purpose	is	to	make	sure	that	the	Visual	Studio	solution	and	its
projects	are	all	up	to	date.	If	you	modify	the	CMakeLists.txt	this	project	will	update	your	Visual	Studio
solution.	All	other	projects	depend	on	this	one	so	you	don't	have	to	build	it	manually.	Unfortunately	when
the	solution	and	projects	are	updated	by	this	Visual	Studio	will,	for	each	one	updated,	ask	you	if	you	want	to
reload	it,	which	can	get	a	bit	annoying.

If	you	look	at	the	"toDo"	project	you	will	notice	that	it	only	contains	the	.cc	files.	This	is	because	those	are	the	only
files	listed	in	the	CMakeLists.txt	for	the	toDo	target.	If	you	were	to	add	ToDo.h	to	the	toDo	target	it	would	appear	in

CMake Tutorial

16 Chapter 2: IDE Integration

the	"toDo"	project	in	Visual	Studio.

Let's	try	and	build	and	see	what	happens.

I	used	the	"Start	Debugging"	button	on	the	toolbar	which	tried	to	debug	the	"ALL_BUILD"	project.	So	while	it
successfully	built	toDo.exe	it	was	not	run	since	"ALL_BUILD"	does	not	produce	any	outputs,	much	less	an
executable.	So	if	you	want	to	actually	debug	"toDo"	you	will	have	to	explicitly	pick	that	project.	If	we	explicitly
debug	the	"toDo"	project	we	get	what	we	were	expecting.

Note:	If	you	set	the	project	you	want	to	debug	as	the	"StartUp"	project	Visual	Studio	will	debug	it	when	you	click
the	"Start	Debugging"	button.	You	can	recognize	the	"StartUp"	project	as	its	name	will	be	bold.	To	do	this	right
click	on	the	project	and	pick	"Set	as	StartUp	Project".

CMake Tutorial

17 Chapter 2: IDE Integration

Unfortunately	our	program	is	run	in	a	command	window	that	closes	as	soon	as	our	program	completes,	so	we	don't
get	to	see	its	output.	However	the	Output	Window	in	Visual	Studio	shows	that	toDo	exited	with	a	code	of	0	which
means	our	test	still	passes.	So	everything	works	fine	in	Visual	Studio.

If	you	need	to	be	able	to	build	from	the	command	line	either	because	you	prefer	to	or	for	an	automated	build
process	you	can	use	the	MSBuild	command.

Note:	MSBuild	does	not	appear	to	be	included	with	Visual	Studio	Express,	but	only	Visual	Studio	Professional.

 > cd visualStudio

 > MSBuild ALL_BUILD.vcxproj

Microsoft (R) Build Engine Version 4.0.30319.1

[Microsoft .NET Framework, Version 4.0.30319.269]

Copyright (C) Microsoft Corporation 2007. All rights reserved.

Build started 7/22/2012 1:18:41 AM.

Project "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ALL_BUILD.vcxproj" on node 1 (default targets).

Project "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ALL_BUILD.vcxproj" (1) is building "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ZERO_CHECK.vcxproj" (2) on node 1 (default targets).

PrepareForBuild:

 Creating directory "Win32\Debug\ZERO_CHECK\".

 Creating directory "Debug\".

InitializeBuildStatus:

 Creating "Win32\Debug\ZERO_CHECK\ZERO_CHECK.unsuccessfulbuild" because "AlwaysCreate" was specified.

CustomBuild:

 Checking Build System

 CMake does not need to re-run because M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio/CMakeFiles/generate.stamp is up-to-date.

FinalizeBuildStatus:

 Deleting file "Win32\Debug\ZERO_CHECK\ZERO_CHECK.unsuccessfulbuild".

 Touching "Win32\Debug\ZERO_CHECK\ZERO_CHECK.lastbuildstate".

Done Building Project "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ZERO_CHECK.vcxproj" (default targets).

Project "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ALL_BUILD.vcxproj" (1) is building "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj" (3) on node 1 (default targets).

PrepareForBuild:

 Creating directory "toDo.dir\Debug\".

CMake Tutorial

18 Chapter 2: IDE Integration

 Creating directory "toDo.dir\Debug\".

InitializeBuildStatus:

 Creating "toDo.dir\Debug\toDo.unsuccessfulbuild" because "AlwaysCreate" was specified.

CustomBuild:

 Building Custom Rule M:/Programming/C++/CMake Tutorial/flavors/part1_step2/CMakeLists.txt

 CMake does not need to re-run because M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\CMakeFiles\generate.stamp is up-to-date.

ClCompile:

 C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\CL.exe /c /Zi /nologo /W3 /WX- /Od /Ob0 /Oy- /D WIN32 /D _WINDOWS /D _DEBUG /D "CMAKE_INTDIR=\"Debug\"" /D _MBCS /Gm- /MDd /GS /fp:precise /Zc:wchar_t /Zc:forScope /GR /Fo"toDo.dir\Debug\\" /Fd"M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio/Debug/toDo.pdb" /Gd /TP /analyze- /errorReport:queue "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\main.cc" "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\ToDo.cc" /Zm1000 /GX /GZ

cl : Command line warning D9035: option 'GX' has been deprecated and will be removed in a future release [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

cl : Command line warning D9036: use 'EHsc' instead of 'GX' [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

cl : Command line warning D9035: option 'GZ' has been deprecated and will be removed in a future release [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

cl : Command line warning D9036: use 'RTC1' instead of 'GZ' [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

 main.cc

 ToDo.cc

 Generating Code...

ManifestResourceCompile:

 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\rc.exe /nologo /fo"toDo.dir\Debug\toDo.exe.embed.manifest.res" toDo.dir\Debug\toDo_manifest.rc

Link:

 C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\link.exe /ERRORREPORT:QUEUE /OUT:"M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\Debug\toDo.exe" /INCREMENTAL /NOLOGO kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /MANIFEST /ManifestFile:"toDo.dir\Debug\toDo.exe.intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG /PDB:"M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio/Debug/toDo.pdb" /SUBSYSTEM:CONSOLE /STACK:"10000000" /TLBID:1 /DYNAMICBASE /NXCOMPAT /IMPLIB:"M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio/Debug/toDo.lib" /MACHINE:X86 toDo.dir\Debug\toDo.exe.embed.manifest.res

 toDo.dir\Debug\main.obj

 toDo.dir\Debug\ToDo.obj /machine:X86 /debug

Manifest:

 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\mt.exe /nologo /verbose /out:"toDo.dir\Debug\toDo.exe.embed.manifest" /manifest toDo.dir\Debug\toDo.exe.intermediate.manifest

 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\rc.exe /nologo /fo"toDo.dir\Debug\toDo.exe.embed.manifest.res" toDo.dir\Debug\toDo_manifest.rc

LinkEmbedManifest:

 C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\link.exe /ERRORREPORT:QUEUE /OUT:"M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\Debug\toDo.exe" /INCREMENTAL /NOLOGO kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /MANIFEST /ManifestFile:"toDo.dir\Debug\toDo.exe.intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG /PDB:"M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio/Debug/toDo.pdb" /SUBSYSTEM:CONSOLE /STACK:"10000000" /TLBID:1 /DYNAMICBASE /NXCOMPAT /IMPLIB:"M:/Programming/C++/CMake Tutorial/flavors/part1_step2/visualStudio/Debug/toDo.lib" /MACHINE:X86 toDo.dir\Debug\toDo.exe.embed.manifest.res

 toDo.dir\Debug\main.obj

 toDo.dir\Debug\ToDo.obj /machine:X86 /debug

 toDo.vcxproj -> M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\Debug\toDo.exe

FinalizeBuildStatus:

 Deleting file "toDo.dir\Debug\toDo.unsuccessfulbuild".

 Touching "toDo.dir\Debug\toDo.lastbuildstate".

Done Building Project "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj" (default targets).

PrepareForBuild:

 Creating directory "Win32\Debug\ALL_BUILD\".

InitializeBuildStatus:

 Creating "Win32\Debug\ALL_BUILD\ALL_BUILD.unsuccessfulbuild" because "AlwaysCreate" was specified.

CustomBuild:

 Building Custom Rule M:/Programming/C++/CMake Tutorial/flavors/part1_step2/CMakeLists.txt

 CMake does not need to re-run because M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\CMakeFiles\generate.stamp is up-to-date.

 Build all projects

FinalizeBuildStatus:

 Deleting file "Win32\Debug\ALL_BUILD\ALL_BUILD.unsuccessfulbuild".

 Touching "Win32\Debug\ALL_BUILD\ALL_BUILD.lastbuildstate".

Done Building Project "M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ALL_BUILD.vcxproj" (default targets).

Build succeeded.

"M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\ALL_BUILD.vcxproj" (default target) (1) ->

"M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj" (default target) (3) ->

(ClCompile target) ->

 cl : Command line warning D9035: option 'GX' has been deprecated and will be removed in a future release [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

 cl : Command line warning D9036: use 'EHsc' instead of 'GX' [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

 cl : Command line warning D9035: option 'GZ' has been deprecated and will be removed in a future release [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

 cl : Command line warning D9036: use 'RTC1' instead of 'GZ' [M:\Programming\C++\CMake Tutorial\flavors\part1_step2\visualStudio\toDo.vcxproj]

 4 Warning(s)

 0 Error(s)

Time Elapsed 00:00:05.49

MSBuild ALL_BUILD.vcxproj

The	MSBuild	tool	requires	the	project	to	build	as	a	command	line	argument.	In	this	case	I	built	everything.	As
you	can	see	its	output	is	rather	verbose.	(Also	it	seems	the	projects	created	by	CMake	could	use	some	updating.)	
reference,	command	line	reference	(2012-07-22)

Xcode
Mac	OS	X

Xcode	Version	4.1	Build	4B110	was	used.

Generating	an	Xcode	project	is	very	similar	to	generating	any	other	project:

CMake Tutorial

19 Chapter 2: IDE Integration

http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx
http://msdn.microsoft.com/en-us/library/ms164311.aspx

 > mkdir xcode

 > cd xcode

 > cmake -G "Xcode" ..

-- The C compiler identification is GNU 4.2.1

-- The CXX compiler identification is GNU 4.2.1

-- Checking whether C compiler has -isysroot

-- Checking whether C compiler has -isysroot - yes

-- Checking whether C compiler supports OSX deployment target flag

-- Checking whether C compiler supports OSX deployment target flag - yes

-- Check for working C compiler using: Xcode

-- Check for working C compiler using: Xcode -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Checking whether CXX compiler has -isysroot

-- Checking whether CXX compiler has -isysroot - yes

-- Checking whether CXX compiler supports OSX deployment target flag

-- Checking whether CXX compiler supports OSX deployment target flag - yes

-- Check for working CXX compiler using: Xcode

-- Check for working CXX compiler using: Xcode -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: /Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode

If	you	look	closely	you	will	notice	that	most	of	CMake's	output	looks	the	same	as	it	did	when	we	first	ran	it.	In	fact
the	only	major	difference	is	that	CMake	doesn't	directly	interact	with	the	compiler,	it	uses	Xcode	instead.	We	are
still	doing	an	out-of-source	build	so	even	the	Xcode	project	won't	clutter	your	source	tree.	CMake	created	the
following	files:

Most	of	these	files	will	look	familiar	if	you	had	looked	at	what	files	CMake	generated	before.	The	most	important
file	is	To Do List.xcodeproj.	Note	that	the	project	file	is	named	after	the	project	command	in	CMakeLists.txt.	If	spaces
in	file	names	cause	trouble	in	your	environment	then	you	will	want	to	ensure	your	project	names	have	no	spaces.
Now	let's	take	a	look	at	the	project	CMake	created	for	us.

CMake Tutorial

20 Chapter 2: IDE Integration

The	project	is	not	as	neat	as	one	you	would	have	made	by	hand.	Most	conspicuously	ToDo.h	is	missing.	This	is
because	CMake	doesn't	actually	know	about	it.	However	because	it	is	in	the	same	directory	as	ToDo.cc	the	compiler
will	still	find	it.	If	you	were	to	include	ToDo.h	in	the	add_executable()	command	then	it	would	be	included	in	the
Xcode	project.	Both	Xcode	and	CMake	know	not	to	compile	header	files	so	there	would	be	no	actual	effect	on	the
build.

You	will	notice	the	extra	folders	"ALL_BUILD"	and	"ZERO_CHECK",	these	actually	correspond	to	particular
Xcode	targets	created	by	CMake.	These	are	the	targets	created	by	CMake:

ZERO_CHECK

This	oddly	named	target	checks	your	CMakeLists.txt	and	updates	your	project	as	needed.	Just	as	with	the
generated	Makefile.

toDo

This	is	our	executable	as	specified	by	the	add_executable()	command.	This	will	build	our	little	command	line

CMake Tutorial

21 Chapter 2: IDE Integration

tool.

RUN_TESTS

This	runs	CTest	just	as	make test	did	before.	It	produces	the	same	output	files	as	before,	too.	CTest's	output,
however,	is	not	displayed,	but	it	can	be	found	using	the	Log	Navigator.	Also	as	before	it	does	not	depend	on
any	other	targets,	e.g.	"toDo,"	even	if	a	test	does.

ALL_BUILD

This	builds	all	targets	except	"RUN_TESTS"	just	as	make	did	before.	Since	we	only	specified	one	target,
"toDo,"	this	target	is	redundant,	but	if	we	had	specified	other	targets,	say	another	executable,	this	would
build	them	all.

Let's	build	toDo	and	see	what	output	Xcode	produces.

The	"Run"	button	in	Xcode	builds	and	then	runs	the	target.	The	build	succeeded	and	the	test	still	passes;	so	far
everything	works	fine	in	Xcode.	You	will	notice,	though,	that	we	now	have	a	warning.	If	you	were	to	look	in	Xcode
you	will	find	that	-Wmost,	-Wno-four-char-constants,	and	-Wno-unknown-pragmas	are	passed	to	gcc	by	Xcode.	Our
CMakeLists.txt	doesn't	pass	any	additional	options	to	the	compiler	so	when	we	were	using	the	Makefile	generator	we
were	using	gcc's	default	settings.	For	now	don't	worry	about	the	warning,	we	will	get	to	that	in	chapter	3.

Now	if	you	prefer	to	work	from	the	command	line	but	must	use	Xcode	you	can	use	the	xcodebuild	tool	provided	by
Apple.

CMake Tutorial

22 Chapter 2: IDE Integration

 > cd xcode

 > xcodebuild -list

Information about project "To Do List":

 Targets:

 ALL_BUILD

 RUN_TESTS

 ZERO_CHECK

 toDo

 Build Configurations:

 Debug

 Release

 MinSizeRel

 RelWithDebInfo

 If no build configuration is specified "Debug" is used.

 > xcodebuild

=== BUILD AGGREGATE TARGET ZERO_CHECK OF PROJECT To Do List WITH THE DEFAULT CONFIGURATION (Debug) ===

Check dependencies

PhaseScriptExecution "CMake Rules" "xcode/To Do List.build/Debug/ZERO_CHECK.build/Script-1D0B6873874D4ED8AF14DE31.sh"

 cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2"

 /bin/sh -c "\"/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/ZERO_CHECK.build/Script-1D0B6873874D4ED8AF14DE31.sh\""

echo ""

make -f /Volumes/Documents/Programming/C++/CMake\ Tutorial/flavors/part1_step2/xcode/CMakeScripts/ReRunCMake.make

make[1]: `CMakeFiles/cmake.check_cache' is up to date.

=== BUILD NATIVE TARGET toDo OF PROJECT To Do List WITH THE DEFAULT CONFIGURATION (Debug) ===

Check dependencies

CompileC "xcode/To Do List.build/Debug/toDo.build/Objects-normal/x86_64/ToDo.o" ToDo.cc normal x86_64 c++ com.apple.compilers.llvmgcc42

 cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2"

 setenv LANG en_US.US-ASCII

 /Developer/usr/bin/llvm-gcc-4.2 -x c++ -arch x86_64 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -O0 "-DCMAKE_INTDIR=\"Debug\"" -isysroot /Developer/SDKs/MacOSX10.7.sdk -fasm-blocks -mmacosx-version-min=10.7 -gdwarf-2 "-I/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug/include" "-I/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/DerivedSources/x86_64" "-I/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/DerivedSources" -Wmost -Wno-four-char-constants -Wno-unknown-pragmas "-F/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug" -c "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/ToDo.cc" -o "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/Objects-normal/x86_64/ToDo.o"

CompileC "xcode/To Do List.build/Debug/toDo.build/Objects-normal/x86_64/main.o" main.cc normal x86_64 c++ com.apple.compilers.llvmgcc42

 cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2"

 setenv LANG en_US.US-ASCII

 /Developer/usr/bin/llvm-gcc-4.2 -x c++ -arch x86_64 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -O0 "-DCMAKE_INTDIR=\"Debug\"" -isysroot /Developer/SDKs/MacOSX10.7.sdk -fasm-blocks -mmacosx-version-min=10.7 -gdwarf-2 "-I/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug/include" "-I/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/DerivedSources/x86_64" "-I/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/DerivedSources" -Wmost -Wno-four-char-constants -Wno-unknown-pragmas "-F/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug" -c "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/main.cc" -o "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/Objects-normal/x86_64/main.o"

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/main.cc: In function 'int equalityTest(T1, T2, const char*, const char*, const char*, int) [with T1 = long unsigned int, T2 = int]':

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/main.cc:34: instantiated from here

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/main.cc:58: warning: comparison between signed and unsigned integer expressions

Ld xcode/Debug/toDo normal x86_64

 cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2"

 setenv MACOSX_DEPLOYMENT_TARGET 10.7

 /Developer/usr/bin/llvm-g++-4.2 -arch x86_64 -isysroot /Developer/SDKs/MacOSX10.7.sdk "-L/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug" "-F/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug" -filelist "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/Objects-normal/x86_64/toDo.LinkFileList" -mmacosx-version-min=10.7 -Wl,-search_paths_first -Wl,-headerpad_max_install_names -o "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/Debug/toDo"

PhaseScriptExecution "CMake PostBuild Rules" "xcode/To Do List.build/Debug/toDo.build/Script-01429AA71A364B6AAE9CB89B.sh"

 cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2"

 /bin/sh -c "\"/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/toDo.build/Script-01429AA71A364B6AAE9CB89B.sh\""

echo "Depend check for xcode"

Depend check for xcode

cd /Volumes/Documents/Programming/C++/CMake\ Tutorial/flavors/part1_step2/xcode && make -C /Volumes/Documents/Programming/C++/CMake\ Tutorial/flavors/part1_step2/xcode -f /Volumes/Documents/Programming/C++/CMake\ Tutorial/flavors/part1_step2/xcode/CMakeScripts/XCODE_DEPEND_HELPER.make PostBuild.toDo.Debug

make[1]: Nothing to be done for `PostBuild.toDo.Debug'.

=== BUILD AGGREGATE TARGET ALL_BUILD OF PROJECT To Do List WITH THE DEFAULT CONFIGURATION (Debug) ===

Check dependencies

PhaseScriptExecution "CMake Rules" "xcode/To Do List.build/Debug/ALL_BUILD.build/Script-48A6EF12B1004D59A240CCC6.sh"

 cd "/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2"

 /bin/sh -c "\"/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/xcode/To Do List.build/Debug/ALL_BUILD.build/Script-48A6EF12B1004D59A240CCC6.sh\""

echo ""

echo Build\ all\ projects

Build all projects

** BUILD SUCCEEDED **

xcodebuild -list

This	lists	all	the	targets	and	all	the	build	configurations	set	up	in	the	Xcode	project.	Xcode,	by	default,	uses
the	xcodeproj	file	in	the	current	directory	if	there	is	only	one,	which	is	the	case	when	using	CMake.	(man
page	2012-07-17)

xcodebuild

xcodebuild	assumes	the	first	target	if	none	is	provided	on	the	command	line,	much	like	make.	Conveniently
CMake	made	ALL_BUILD	the	first	target.	As	you	can	see	this	builds	everything	and	is	a	lot	more	verbose	than
the	makefile	created	by	CMake.

CMake Tutorial

23 Chapter 2: IDE Integration

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man1/xcodebuild.1.html

iOS
While	cross-compiling	will	not	be	covered	until	later	you	can	build	for	iOS	using	CMake	and	the	Xcode	generator.
There	is	a	Google	Code	Project	specifically	for	this:	ios-cmake	(2012-07-09).

Eclipse	CDT4
Eclipse	Indigo	Version	3.7.2	Build	I20110613-1736	was	used.

If	you	want	to	use	Eclipse	you	simply	need	to	tell	CMake	so	when	you	generate	your	project	files.

 > mkdir eclipse

 > cd eclipse

 > cmake -G "Eclipse CDT4 - Unix Makefiles" ..

-- The C compiler identification is GNU

-- The CXX compiler identification is GNU

-- Could not determine Eclipse version, assuming at least 3.6 (Helios). Adjust CMAKE_ECLIPSE_VERSION if this is wrong.

-- Check for working C compiler: /usr/bin/gcc

-- Check for working C compiler: /usr/bin/gcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

CMake Warning in CMakeLists.txt:

 The build directory is a subdirectory of the source directory.

 This is not supported well by Eclipse. It is strongly recommended to use a

 build directory which is a sibling of the source directory.

-- Generating done

-- Build files have been written to: /home/john/Desktop/part1_step2/eclipse

 > ls -A

CMakeCache.txt cmake_install.cmake CTestTestfile.cmake .project

CMakeFiles .cproject Makefile

Well	perhaps	it	isn't	actually	that	simple.	CMake	warns	us	that	Eclipse	doesn't	like	the	build	directory	being	a
subdirectory	of	the	source	directory.	As	you	can	see	it	created	the	.project	and	.cproject	files	required	by	Eclipse
CDT.

CMake Tutorial

24 Chapter 2: IDE Integration

http://code.google.com/p/ios-cmake/

The	project	looks	okay,	however	it	isn't.	Certain	aspects	of	the	project	will	not	function	properly.	So	we	will	learn
from	our	mistake	and	follow	CMake's	advice.

 > cd ..

 > mkdir eclipse

 > cd eclipse

 > cmake -G "Eclipse CDT4 - Unix Makefiles" ../part1_step2/

-- The C compiler identification is GNU

-- The CXX compiler identification is GNU

-- Could not determine Eclipse version, assuming at least 3.6 (Helios). Adjust CMAKE_ECLIPSE_VERSION if this is wrong.

-- Check for working C compiler: /usr/bin/gcc

-- Check for working C compiler: /usr/bin/gcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: /home/john/Desktop/eclipse

 > ls -a

. CMakeCache.txt cmake_install.cmake CTestTestfile.cmake .project

.. CMakeFiles .cproject Makefile

CMake's	output	looks	the	same,	save	for	the	lack	of	a	warning,	and	it	also	created	the	same	files	as	before.	The
project	should	work	fine	this	time.	Let's	have	a	look.

CMake Tutorial

25 Chapter 2: IDE Integration

The	project	looks	a	lot	better	this	time.	If	you	are	familiar	with	Eclipse	you	may	know	that	it	only	supports	one
target	per	project	whereas	CMake	supports	many.	In	fact	managing	builds	of	complex	source	trees	is	one	of
CMake's	strengths.	These	seem	to	be	at	odds	with	each	other.	If	you	looked	closely	before	you	would	have	noticed
that	CMake	created	a	Makefile	and	created	a	Makefile	project	for	Eclipse.	This	allows	CMake	to	support	multiple
targets	and	work	with	Eclipse.	The	"[Subprojects]"	folder	lists	every	CMake	project	included,	in	our	case	there's
just	one.	Similarly	the	"[Targets]"	folder	lists	all	of	the	targets	defined	in	your	CmakeLists.txt.	If	you	looked	at	any	of
the	other	IDE	projects	generated	by	CMake	you	may	be	surprised	to	see	ToDo.h	included.	That	is	because	the	Eclipse
project	includes	some	virtual	folders	which	display	whatever	files	happened	to	be	in	the	corresponding	directory.

Let's	try	building	our	project	and	see	if	it	still	works.

CMake Tutorial

26 Chapter 2: IDE Integration

It	still	builds	fine	and	as	you	can	see	Eclipse	uses	make	to	do	the	building.	Conveniently	the	binary	executable
"toDo"	is	added	to	the	project	so	it	can	easily	be	run	or	debugged	from	within	Eclipse.

Eclipse	supports	Makefiles	rather	well	so	you	can	get	it	to	build	any	of	the	available	targets.	Eclipse	provides	a
convenient	list.

CMake Tutorial

27 Chapter 2: IDE Integration

The	default	is,	of	course,	to	build	all	targets.	"[exe]	toDo"	is,	of	course	our	tiny	example	program.	However	there	is
also	"[exe]	toDo/fast"	which	has	an	intriguing	name.	The	difference	between	the	two	is	that	the	"fast"	version
doesn't	check	if	the	CmakeLists.txt	has	changed	or	recalculate	toDo's	dependencies.	It	also	doesn't	calculate
completion	percentages.	If	you	are	sure	that	none	of	those	have	changed	using	a	"fast"	target	can	speed	up	your
build	a	bit.	However,	the	most	interesting	target	here	is	":	test"	which	will	run	CTest	just	as	make test	did	before.
CTest's	output	is	displayed	in	the	Build	Console	and	the	Testing	directory	is	added	to	the	project.

CMake Tutorial

28 Chapter 2: IDE Integration

As	you	can	see	the	test	still	passes	so	everything	works	in	Eclipse.

If	you	desire	to	still	build	your	project	from	the	command	line	it	is	actually	quite	easy	because	CMake	created
Makefiles.	So	you	can	build	just	as	you	did	before.

 > cd ../eclipse

 > make

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

[100%] Building CXX object CMakeFiles/toDo.dir/ToDo.cc.o

Linking CXX executable toDo

[100%] Built target toDo

KDevelop
For	KDevelop	3	CMake	will	generate	a	project	for	you	to	use.	KDevelop	4,	however,	has	native	CMake	support
making	that	step	unnecessary.

Generated	(KDevelop3)
KDevelop	Version	3.3.4	was	used.

If	you	want	CMake	to	create	a	KDevelop	project	for	you	specify	the	"KDevelop3"	generator.	There	is	also	a
"KDevelop3	-	Unix	Makefiles"	which	generates	the	same	exact	files,	so	save	yourself	the	typing.

CMake Tutorial

29 Chapter 2: IDE Integration

 > mkdir kdevelop

 > cd kdevelop

 > cmake -G "KDevelop3" ..

-- The C compiler identification is GNU

-- The CXX compiler identification is GNU

-- Check for working C compiler: /usr/bin/gcc

-- Check for working C compiler: /usr/bin/gcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: /home/john/Desktop/part1_step2/kdevelop

The	output	looks	similar	to	the	first	time	we	ran	it.	It	produces	a	few	extra	files	for	KDevelop,	though.

The	KDevelop	3	project	file,	To Do List.kdevelop	is	the	most	important	of	the	new	files.	You	will	notice	that	CMake
still	created	a	Makefile.	KDevelop's	Makefile	support,	however,	is	quite	good.	Let's	see	the	project.

CMake Tutorial

30 Chapter 2: IDE Integration

Oddly	the	"File	List"	only	displays	ToDo.cc	even	though	we	would	expect	it	to	also	include	main.cc.	The	"File
Selector"	shows	all	of	the	files	in	your	source	directory.	Let's	see	if	we	can	still	build.

CMake Tutorial

31 Chapter 2: IDE Integration

Of	course	it	still	builds.	We	are	using	the	same	Makefile	as	we	originally	did.	The	only	difference	this	time	is	that
KDevelop	is	running	make	for	us.	Thanks	to	KDevelop's	Makefile	support	we	can	actually	build	any	target	we
want.

CMake Tutorial

32 Chapter 2: IDE Integration

By	default	KDevelop	builds	the	target	"all"	which	does	exactly	what	you'd	expect,	it	builds	everything.	There	are	a
few	targets	that	end	with	"/fast".	These	"fast"	targets	skip	some	steps	to	save	time,	so	be	careful	when	using	them.
Dependency	calculation	and	checking	the	CMakeLists.txt	file	for	changes	are	skipped;	also	completion	percentages
aren't	printed.	While	these	will	build	faster	than	the	regular	targets	if	there	are	any	changes	that	require
dependencies	to	be	recalculated	or	any	CMakeLists.txt	have	been	changed	you	results	will	not	be	what	you	expected.

Currently	the	most	interesting	target	is	"test".	Building	this	target	is,	of	course,	the	same	as	running	make test.

CMake Tutorial

33 Chapter 2: IDE Integration

Our	test	still	passes.	Don't	lie,	I	know	you	had	doubts.	CTest's	output	is	displayed	in	the	Messages	panel.	Just	as
before	CTest	creates	the	same	files,	too.

If	you	wanted	to	build	from	the	command	line	it's	quite	simple	since	we	have	a	Makefile	just	as	before.

 > cd kdevelop

 > make

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

[100%] Building CXX object CMakeFiles/toDo.dir/ToDo.cc.o

Linking CXX executable toDo

[100%] Built target toDo

CMake	Support	(KDevelop4)
KDevelop	Version	4.3.1	was	used.

KDevelop	4	has	built-in	support	for	CMake	projects.	So	rather	than	use	a	generator	to	make	a	new	project	file	as
was	done	in	the	previous	examples	we	instead	simply	open	the	CMake	project	with	KDevelop.

After	launching	KDevelop	4	choose	"Open	/	Import	Project..."	from	the	"Project	Menu"	and	follow	the	steps	of	the
import	process.	First	you	will	have	to	find	you	CmakeLists.txt	file.	KDevelop	will	treat	it	as	your	project	file.	Next	it
will	ask	for	a	project	name	and	build	system.	It	will	infer	both	and	likely	be	correct.	Lastly	it	will	configure	your
build	directory	and	CMake	binary.	Again	the	defaults	are	probably	sufficient.	After	that	you	will	get	to	see	your
project.

CMake Tutorial

34 Chapter 2: IDE Integration

The	file	list	shows	all	files	that	are	actually	in	the	project	directory.	Conveniently	this	include	ToDo.h.	However	you
may	also	notice	a	kdev4	project	file.	While	KDevelop4	supports	CMake,	including	out	of	source	builds,	it	does	put	a
project	file	in	your	source	directory.	Although	since	it	is	only	one	file	it	is	easy	to	clean	up	(or	have	git	ignore).

Building	is,	of	course,	as	simple	as	clicking	the	"Build	Selection"	button.

CMake Tutorial

35 Chapter 2: IDE Integration

You	will	notice	that	KDevelop	still	uses	make	to	build	the	project.	The	main	difference	here	is	that	KDevelop	also
runs	CMake	for	you.	These	are	the	files	it	created:

Exactly	the	files	you	should	have	expected.

Now	if	I	wanted	to	run	our	little	program	the	"Execute"	button	doesn't	seem	to	work,	it	merely	displays	an	error.
However	if	I	right-click	on	the	"toDo"	entry	under	the	project	and	pick	"Execute	As..."	>	"Native	Application"	it

CMake Tutorial

36 Chapter 2: IDE Integration

runs	fine.

Unfortunately	I	cannot	find	a	way	to	run	the	tests	from	within	KDevelop.	As	it	does	create	a	Makefile	project	the
tests	can	be	manually	run	from	the	command	line.	That	seems	like	an	ugly	work-around,	though.

 > cd kdevelop

 > make test

Running tests...

Test project /Documents/Programming/C++/CMake Tutorial/flavors/part1_step2/kdevelop

 Start 1: toDoTest

1/1 Test #1: toDoTest Passed 0.01 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.05 sec

Since	this	is	a	Makefile	project	you	can	easily	build	from	the	command	line	using	make.

 > cd kdevelop

 > make

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

[100%] Building CXX object CMakeFiles/toDo.dir/ToDo.cc.o

Linking CXX executable toDo

[100%] Built target toDo

CMake Tutorial

37 Chapter 2: IDE Integration

CMakeLists.txt New or modified lines in bold.

Chapter	3:	GUI	Tool
Introduction

Although	when	we	looked	at	IDE	projects	generated	by	CMake	we	still	used	the	command	line.	You	can	also	use
the	CMake	GUI	to	generate	and	configure	projects.	This	can	be	convenient	if	you	don't	like	the	command	line,
however	it	can	be	even	more	useful	than	that.

CMake	stores	a	lot	of	configuration	settings	in	the	project's	cache.	This	cache	can	be	viewed	and	edited	using	the
CMake	GUI.	This	can	be	quite	useful	for	seeing	how	a	project	is	configured	as	the	settings	are	presented	in	a	nice
list.	You	can	also	change	these	values	so	you	can	set	your	build	type	to	"Release"	to	make	a	release	build	or	you	can
add	specific	compiler	flags.

First	Fix	a	Warning
In	chapter	2	when	covering	the	Xcode	generator	I	said	that	I'd	fix	the	warning	we	saw	later.	Well	it	looks	like	later
has	come.	The	first	thing	we	need	to	do	is	give	the	compiler	some	more	flags	so	that	we	can	reproduce	the	warning.

1∞cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

2∞set(CMAKE_LEGACY_CYGWIN_WIN32 0)

3∞

4∞project("To Do List")

5∞

6∞enable_testing()

7∞

8∞

9∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" OR

10∞ "${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

11∞ set(warnings "-Wall -Wextra -Werror")

12∞elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

13∞ set(warnings "/W4 /WX /EHsc")

14∞endif()

15∞set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${warnings}")

16∞set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${warnings}")

17∞

18∞add_executable(toDo main.cc

19∞ ToDo.cc)

20∞

21∞add_test(toDoTest toDo)

if(...),	elseif(...),	else(),	endif()

While	everything	in	CMake	looks	like	a	function	call	control	flow	is	available.	Its	if	syntax	is	rather	strange
so	be	sure	to	keep	the	documentation	(2013-01-07)	handy.	The	arguments	passed	to	else()	and	endif()	are
ignored,	but	they	can	be	useful	for	documentation	purposes.

CMAKE_<LANG>_COMPILER_ID

These	variables	identify	the	type	of	compiler	being	used.	Here	we	are	using	it	to	be	able	to	pass	different
flags	to	different	compilers	as	needed.	Since	Clang	accepts	the	same	arguments	as	GCC	I	grouped	them
together.	A	list	of	possible	values	is	provided	by	the	documentation	(2013-01-07).	Obviously	my	if	statement
is	not	exhaustive	as	it	only	covers	the	3	compilers	I	have	readily	available.

set(variableName value...)

Set	a	variable	with	the	given	name	to	a	particular	value	or	list	of	values.	(Lists	will	be	covered	later)

set()	documentation	(2013-03-26)
CMAKE_<LANG>_FLAGS

These	variables	store	the	flags	that	will	be	passed	to	the	compiler	for	all	build	types.	In	this	particular	case
we	wanted	to	add	some	flags	that	control	warnings.	(Build	types	will	be	covered	later	in	this	chapter.)

Note:	This	variable	is	a	string	containing	all	of	the	flags	separated	by	spaces;	it	is	not	a	list.

CMake Tutorial

38 Chapter 3: GUI Tool

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:if
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:CMAKE_LANG_COMPILER_ID
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:set

In	this	case	we	are	turning	on	most	warnings	and	having	the	compiler	treat	them	as	errors.	(This	is,	in	fact,
Microsoft's	suggestion	for	all	new	projects.)	Since	we	only	want	to	add	these	options	we	append	them	to	the	end
of	the	existing	flags	string.

CMake	does	offer	some	string	functions,	but	not	for	something	as	simple	as	appending	to	an	existing	string.

A	few	notes	about	MSVC:	The	/EHsc	flag	enables	complete	C++	exception	handling	which	is	required	by
iostream.	(/EH	documentation	2013-04-13)	More	importantly	is	that	CMake	will	convert	Unix-style	flags	to
Microsoft-style	flags	automatically	for	you.	So	we	could	have	used	"-W4 -WX -EHsc"	instead	and	it	would	have
worked.	This	means	that	any	common	flags	do	not	need	to	be	defined	separately	for	MSVC.	I	would,
however,	recommend	always	using	Microsoft-style	flags	for	MSVC	specific	flags.	Then	not	only	is	it
obvious	that	they	are	MSVC	flags,	but	they	are	also	easier	to	look	up	since	you	won't	have	to	remember	to
translate	them	yourself.

Now	if	we	build	not	only	should	we	see	more	warnings	and	since	they	are	being	treated	as	errors	they	should	also
prevent	the	build	from	completing.	Since	warnings	usually	point	to	potential	problems	I	always	set	up	my
CMakeLists.txt	to	enable	stricter	warnings	and	treat	them	as	errors.	Developing	this	way	can	be	a	bit	annoying,	but	in
the	long	run	it	will	lead	to	cleaner	code	and,	in	theory,	fewer	defects.

 > mkdir build

 > cd build

 > cmake -G "Unix Makefiles" ..

-- The C compiler identification is Clang 4.1.0

-- The CXX compiler identification is Clang 4.1.0

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Configuring done

-- Generating done

-- Build files have been written to: /Volumes/Documents/Programming/C++/CMake Tutorial/flavors/mac/part3/build

 > make

Scanning dependencies of target toDo

[50%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/mac/part3/main.cc:22:12: error:

 unused parameter 'argc' [-Werror,-Wunused-parameter]

 int argc,

 ^

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/mac/part3/main.cc:23:12: error:

 unused parameter 'argv' [-Werror,-Wunused-parameter]

 char** argv

 ^

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/mac/part3/main.cc:58:19: error:

 comparison of integers of different signs: 'const unsigned long' and

 'const int' [-Werror,-Wsign-compare]

 if (testValue != expectedValue)

        ~~~~~~~~~ ^  ~~~~~~~~~~~~~

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/mac/part3/main.cc:34:15: note: 

      in instantiation of function template specialization

      'equalityTest<unsigned long, int>' requested here

    result |= EXPECT_EQUAL(list.size(), 3);

              ^

/Volumes/Documents/Programming/C++/CMake Tutorial/flavors/mac/part3/main.cc:8:36: note: 

      expanded from macro 'EXPECT_EQUAL'

#define EXPECT_EQUAL(test, expect) equalityTest( test,  expect, \

                                   ^

3 errors generated.

make[2]: *** [CMakeFiles/toDo.dir/main.cc.o] Error 1

make[1]: *** [CMakeFiles/toDo.dir/all] Error 2

make: *** [all] Error 2

This	time	CMake	found	Clang	and	with	our	new	flags	we	have	3	errors.	(Rather	nice	errors,	actually.)	These	errors	are

CMake Tutorial

39 Chapter 3: GUI Tool

http://msdn.microsoft.com/en-us/library/thxezb7y.aspx
http://msdn.microsoft.com/en-us/library/vstudio/1deeycx5.aspx


main.cc New or modified lines in bold.

actually	simple	to	fix,	so	lets	fix	them	before	we	move	on.

1∞#include <iostream>

2∞  using std::cerr;

3∞  using std::cout;

4∞  using std::endl;

5∞

6∞#include "ToDo.h"

7∞

8∞#define EXPECT_EQUAL(test, expect) equalityTest( test,  expect, \

9∞                                                #test, #expect, \

10∞                                                __FILE__, __LINE__)

11∞

12∞template < typename T1, typename T2 >

13∞int equalityTest(const T1    testValue,

14∞                 const T2    expectedValue,

15∞                 const char* testName,

16∞                 const char* expectedName,

17∞                 const char* fileName,

18∞                 const int   lineNumber);

19∞

20∞

21∞int main(

22∞    int,

23∞    char**

24∞)

25∞{

26∞    int result = 0;

27∞

28∞    ToDo list;

29∞

30∞    list.addTask("write code");

31∞    list.addTask("compile");

32∞    list.addTask("test");

33∞

34∞    result |= EXPECT_EQUAL(list.size(),     size_t(3));

35∞    result |= EXPECT_EQUAL(list.getTask(0), "write code");

36∞    result |= EXPECT_EQUAL(list.getTask(1), "compile");

37∞    result |= EXPECT_EQUAL(list.getTask(2), "test");

38∞

39∞    if (result == 0)

40∞    {

41∞        cout << "Test passed" << endl;

42∞    }

43∞

44∞    return result;

45∞}

46∞

47∞

48∞template < typename T1, typename T2 >

49∞int equalityTest(

50∞    const T1    testValue,

51∞    const T2    expectedValue,

52∞    const char* testName,

53∞    const char* expectedName,

54∞    const char* fileName,

55∞    const int   lineNumber

56∞)

57∞{

58∞    if (testValue != expectedValue)

59∞    {

60∞        cerr << fileName << ":" << lineNumber << ": "

61∞             << "Expected " << testName << " "

62∞             << "to equal " << expectedName << " (" << expectedValue << ") "

63∞             << "but it was (" << testValue << ")" << endl;

64∞

65∞        return 1;

66∞    }

67∞    else

68∞    {

CMake Tutorial

40 Chapter 3: GUI Tool



68∞    {

69∞        return 0;

70∞    }

71∞}

They	were	rather	simple	errors	to	fix.	The	simplest	solution	to	unused	function	parameters	is	to	delete	their	names
leaving	only	the	types,	if	it's	temporary	just	comment	them	out.	This	documents	both	for	other	people	and	the
compiler	that	the	parameters	aren't	being	used.	The	last	error	is	caused	by	literal	numbers	defaulting	to	being	ints.	If
we	construct	a	size_t	the	problem	is	fixed.

CMake	GUI
Generating	Our	Project

The	CMake	GUI	allows	one	to	easily	run	CMake	without	having	to	use	the	command	line.	It	also	makes	it	easier	to
set	or	change	specific	options,	which	we	will	explore.

The	first	two	entries	should	be	familiar,	but	more	explicit	than	what	we	saw	earlier.	To	relate	to	the	command	line
we	were	using:	cd <Where to build the binaries>; cmake <Where is the source code>.	That	command	line	also	configures
and	generates,	which	you	would	do	using	the	"Configure"	and	"Generate"	buttons,	of	course.	The	bulk	of	the
window	is	for	variables,	which	are	only	visible	once	you	have	configured.

It	isn't	quite	that	simple,	though.	Once	you	pick	your	source	and	build	directories	and	then	click	"Configure"
CMake	will	ask	you	about	which	generator	you	want	to	use	and	more.

CMake Tutorial

41 Chapter 3: GUI Tool



The	displayed	options	are	the	typical	ones	used	so	far	during	this	tutorial.	Generate	Unix	Makefiles	and	use	the
default	native	compilers.	A	different	generator	can	be	chosen	from	the	list	rather	than	having	to	carefully	type	it,
which	can	be	handy.	The	other	options	allow	you	to	specify	which	compiler	to	use,	a	topic	that	will	be	covered
later.	Clicking	"Finish"	will	then	actually	configure.

Note:	This	step	can	only	be	done	the	first	time,	so	if	you	want	to	use	a	different	generator	(or	compiler)	you	will
have	to	start	over	with	an	empty	build	directory.

CMake Tutorial

42 Chapter 3: GUI Tool



Notice	that	the	bottom	section	displays	the	same	output	the	cmake	command	displays	when	configuring.	There	are
also	now	some	variables	displayed	in	the	central	portion	of	the	window.	In	this	example	most	are	specific	to	Mac
OS	X.	The	variables'	values	can	easily	be	changed	by	double	clicking	in	the	"Value"	field	and	entering	a	new	value.
CMAKE_BUILD_TYPE

This	variable	controls	the	type	of	build	to	be	done.	The	possible	values	are	empty,	Debug,	Release,
RelWithDebInfo,	and	MinSizeRel.	The	values'	meanings	are	relatively	obvious.	Based	upon	the	value	of	this
variable	CMake	will	set	the	compiler	flags	appropriately.	This	is	done	by	adding	the	value	of	the	variable
CMAKE_<LANG>_FLAGS_<BUILD_TYPE>	to	CMAKE_<LANG>_FLAGS.	By	setting	these	variables	appropriately	you	can	control
the	compiler	flags	for	the	various	types	of	builds.

Note:	This	variable	is	not	available	with	all	generators.	Some	IDE	generators	create	non-Makefile	projects,
e.g.	Visual	Studio,	in	which	case	the	build	type	is	handled	by	the	IDE	itself.

CMAKE_BUILD_TYPE	Documentation	2013-01-20

CMAKE_INSTALL_PREFIX

CMake	can	create	an	install	target	which	will	be	covered	in	a	future	chapter.	This	prefix	can	be	set	to	control
where	things	are	installed.	It	is	similar	to	the	--prefix	argument	for	configure	scripts.

However	if	you	are	curious:	CMAKE_INSTALL_PREFIX	Documentation	2013-01-20

Simply	click	"Configure"	again	as	directed.	Clicking	"Generate"	will	then	generate	our	Makefile	so	we	can	build.

CMake	Cache
If	you	check	the	"Advanced"	box	all	cache	variables	will	be	listed.

CMake Tutorial

43 Chapter 3: GUI Tool

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:CMAKE_BUILD_TYPE
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:CMAKE_INSTALL_PREFIX


CMake	stores	variables	that	need	to	be	persistent	in	the	cache.	These	include	things	such	as	the	path	to	your
compiler	and	the	flags	for	the	compiler.	Naturally	one	should	be	careful	when	editing	variables	in	the	cache.

You	will	notice	that	the	compiler	flags	we	added	earlier	do	not	appear	in	the	cache.	While	this	might	be	a	good	idea
as	it	forces	those	options	to	always	be	used	it	really	isn't	correct.	We	can	tell	set()	to	put	the	variable	in	the	cache,
however	it's	not	that	simple.	Either	the	cache	will	never	be	updated	or	our	options	will	be	appended	every	time
CMake	configures.

The	following	should	do	the	trick:

CMake Tutorial

44 Chapter 3: GUI Tool



CMakeLists.txt New or modified lines in bold.

1∞cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

2∞set(CMAKE_LEGACY_CYGWIN_WIN32 0)

3∞

4∞project("To Do List")

5∞

6∞enable_testing()

7∞

8∞

9∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" OR

10∞    "${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

11∞    set(warnings "-Wall -Wextra -Werror")

12∞elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

13∞    set(warnings "/W4 /WX /EHsc")

14∞endif()

15∞if (NOT CONFIGURED_ONCE)

16∞    set(CMAKE_CXX_FLAGS "${warnings}"

17∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

18∞    set(CMAKE_C_FLAGS   "${warnings}"

19∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

20∞endif()

21∞

22∞

23∞add_executable(toDo main.cc

24∞                    ToDo.cc)

25∞

26∞add_test(toDoTest toDo)

27∞

28∞

29∞set(CONFIGURED_ONCE TRUE CACHE INTERNAL

30∞    "A flag showing that CMake has configured at least once.")

if (NOT CONFIGURED_ONCE)

In	CMake	an	undefined	variable	evaluates	to	false.	Because	of	this	we	can	use	CONFIGURED_ONCE	as	a	flag	to
determine	if	CMake	has	configured	this	project	at	least	once.	
Defined	variables	that	are	empty	or	contain	0,	N,	NO,	OFF,	FALSE,	NOTFOUND	or	variable-NOTFOUND	are	also
considered	false.

set(CMAKE_CXX_FLAGS "${warnings}" CACHE STRING "Flags used by the compiler during all build types." FORCE)

Initialize	the	value	of	CMAKE_CXX_FLAGS	to	be	the	desired	warning	flags.	The	syntax	for	this	form	of	the	set
command	is	explained	below.	Two	things	to	note:

1.	 The	docstring	is	exactly	what	CMake	uses	by	default.	When	overriding	built-in	CMake	variables
be	sure	to	use	the	same	docstring	as	it	does	to	avoid	confusion.

2.	 We	need	to	force	this	value	to	be	stored	in	the	cache	because	the	built-in	variables	are	present	in
the	cache	even	before	the	first	time	our	project	is	configured.	This	is	why	we	need	the
CONFIGURED_ONCE	variable.

set(CONFIGURED_ONCE TRUE CACHE INTERNAL "A flag showing that CMake has configured at least once.")

Set	CONFIGURED_ONCE	to	true	and	store	it	in	the	cache	since	by	now	configuration	is	complete.	We	don't	need	to
force	this	as	CONFIGURED_ONCE	is	not	present	in	the	cache.

A	new	form	of	the	set	command	was	used	this	time	to	store	variables	in	the	CMake	project's	cache.	It	is	explained
here	and	also	in	CMake's	documentation	(2013-01-29)
set(variableName value ... CACHE type docstring [FORCE])

This	form	of	the	set	function	allows	you	to	store	a	variable	in	CMake's	cache.	The	cache	is	both	global	and
persistent.	For	both	of	these	reasons	it	can	be	quite	useful	and	should	be	used	carefully.	The	other	important
thing	about	the	cache	is	that	users	can,	for	the	most	part,	edit	it.	The	CACHE	flag	is	a	literal	that	tells	CMake
you	want	to	store	this	variable	in	the	cache.

type

The	type	of	value	being	stored	in	the	cache.	Possible	values:
FILEPATH

A	path	to	a	file.	In	the	CMake	GUI	a	file	chooser	dialog	may	be	used.

CMake Tutorial

45 Chapter 3: GUI Tool

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:set


PATH

A	path	to	a	directory.	In	the	CMake	GUI	a	directory	chooser	dialog	may	be	used.
STRING

An	arbitrary	string.
BOOL

A	boolean	on/off	value.	In	the	CMake	GUI	a	checkbox	will	be	used.
INTERNAL

A	value	of	any	type	with	no	GUI	entry.	This	is	useful	for	persistent,	global
variables.

docstring

A	string	that	describes	the	purpose	of	the	variable.	If	only	specific	values	are	allowed	list	them
here	as	the	user	will	see	this	string	in	the	CMake	GUI	as	a	tool	tip.

FORCE	(optional)

Force	this	entry	to	be	set	in	the	cache.	Normally	if	a	variable	already	exists	in	the	cache	future
attempts	to	set	it	will	be	ignored	unless	FORCE	is	the	last	argument.	Please	note	that	setting	a
variable	in	the	cache	is	dependent	on	the	variable	already	being	in	the	cache	not	on	its
emptiness.	Because	of	this	and	the	fact	that	many	of	the	CMake	variables	exist	in	the	cache
before	your	CMakeLists.txt	is	processed	you	need	to	test	for	the	first	configuration	as	done	above.

CMake	Curses	Interface
Introducing	ccmake

CMake	also	includes	a	command	line	curses-based	interface,	ccmake.	It	provides	equivalent	functionality	to	that	of
the	GUI.	Most	installations	include	this	tool,	although	not	all.	The	ccmake	tool	can	be	used	both	to	create	a	CMake
build	or	edit	the	cache	of	one.	To	create	a	new	build	it	is	used	very	similarly	to	cmake:	
ccmake path-to-source	
Naturally	editing	a	build's	cache	is	quite	similar:	
ccmake path-to-existing-build	
For	the	most	part	this	tool	is	very	much	like	the	GUI	except,	of	course,	its	interactions	are	all	keyboard	based.	It	can
be	useful	if	you	often	connect	to	your	build	machine	via	an	ssh	session	or	you	don't	want	the	dependency	of	Qt,
which	the	GUI	requires.

CMake Tutorial

46 Chapter 3: GUI Tool



The	main	difference	between	this	tool	and	the	GUI	is	that	it	won't	walk	you	through	setting	up	a	build,	you	have	to
provide	paths	on	the	command	line.	Besides	that	its	features	are	mostly	the	same.	Of	course,	instead	of	clicking	the
"Configure"	and	"Generate"	buttons	you	would	use	the	c	and	g	keys.

Useful	Makefile	Targets
There	are	two	built-in	make	targets	that	CMake	provides	that	are	useful	for	managing	the	cache.	These	are
especially	useful	if	you	work	from	the	command	line	a	lot.

make rebuild_cache

This	target	re-runs	CMake	for	your	build	having	the	same	effect	as	cmake .,	this	can	be	handy,	though,	if	you
have	multiple	versions	of	CMake	installed	or	don't	have	cmake	in	your	path	as	this	target	knows	the	path	to
the	cmake	that	was	originally	used	to	generate	the	build.

make edit_cache

Very	similar	to	the	above	target	except	this	one	runs	the	appropriate	ccmake,	or	cmake-gui	if	ccmake	isn't
installed.	The	reasons	for	this	being	useful	are	the	same,	too.

Most	of	the	time	these	targets	aren't	used,	but	as	they	can	be	handy	it's	good	to	know	about	them.

There	is	one	last	Makefile	target	that	is	useful,	especially	on	larger	projects:	make help.	This	prints	a	list	of	targets
provided	by	the	Makefile.	This	can	be	convenient	if	you	only	want	to	build	specific	targets	but	aren't	sure	how	they
were	named.

CMake Tutorial

47 Chapter 3: GUI Tool



CMakeLists.txt New or modified lines in bold.

Chapter	4:	Libraries	and	Subdirectories
Introduction

So	far	our	project	is	rather	simple.	A	real	project	would	be	more	complicated	than	the	one	we've	created.	Let's	add
subdirectories,	libraries,	and	proper	unit	tests	to	make	our	project	more	realistic.

In	this	chapter	we	will	split	up	our	project	to	have	a	library	which	we	can	put	in	a	subdirectory.	Then	we	will	use
Google	Test	and	Google	Mock	to	add	a	more	realistic	unit	test.

The	Library	in	a	Subdirectory
We	will	make	the	ToDo	class	its	own	library,	and	put	it	in	a	subdirectory.	Even	though	it	is	a	single	source	file
making	it	a	library	actually	has	one	significant	advantage.	CMake	will	compile	source	files	once	for	each	target	that
includes	them.	So	if	the	ToDo	class	is	used	by	our	command	line	tool,	a	unit	test,	and	perhaps	a	GUI	App	it	would
be	compiled	three	times.	Imagine	if	we	had	a	collection	of	classes	instead	of	just	one.	This	results	in	a	lot	of
unnecessary	compilation.

There	were	some	minor	changes	to	the	C++,	grab	the	files	here:	
(CMakeLists.txt	listed	below)

1∞cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

2∞set(CMAKE_LEGACY_CYGWIN_WIN32 0)

3∞

4∞project("To Do List")

5∞

6∞enable_testing()

7∞

8∞

9∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" OR

10∞    "${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

11∞    set(warnings "-Wall -Wextra -Werror")

12∞elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

13∞    set(warnings "/W4 /WX /EHsc")

14∞endif()

15∞if (NOT CONFIGURED_ONCE)

16∞    set(CMAKE_CXX_FLAGS "${warnings}"

17∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

18∞    set(CMAKE_C_FLAGS   "${warnings}"

19∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

20∞endif()

21∞

22∞

23∞include_directories(${CMAKE_CURRENT_SOURCE_DIR})

24∞

25∞add_subdirectory(ToDoCore)

26∞

27∞add_executable(toDo main.cc)

28∞target_link_libraries(toDo toDoCore)

29∞

30∞add_test(toDoTest toDo)

31∞

32∞

33∞set(CONFIGURED_ONCE TRUE CACHE INTERNAL

34∞    "A flag showing that CMake has configured at least once.")

So	now	our	executable	"toDo"	only	depends	on	the	file	"main.cc"	and	the	new	library	"toDoCore".	Our	project	also
has	a	new	subdirectory	"ToDoCore".
include_directories(directories)

Add	directories	to	the	end	of	this	directory's	include	paths.	We	didn't	need	this	before	because	all	of	our	files
were	in	the	same	directory.

include_directories()	documentation	(2013-04-20)

CMake Tutorial

48 Chapter 4: Libraries and Subdirectories

https://code.google.com/p/googletest/
https://code.google.com/p/googlemock/
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:include_directories


ToDoCore/CMakeLists.txt

ToDoCore/unit_test/ToDoTest.cc

CMAKE_CURRENT_SOURCE_DIR

The	full	path	to	the	source	directory	that	CMake	is	currently	processing.

CMAKE_CURRENT_SOURCE_DIR	documentation	(2013-04-20)
add_subdirectory(source_dir)

Include	the	directory	source_dir	in	your	project.	This	directory	must	contain	a	CMakeLists.txt	file.

Note:	We're	omitting	the	optional	second	parameter.	This	only	works	with	subdirectories	of	the	current
directory.	We	will	see	how	to	add	external	directories	later.

add_subdirectory	documentation	(2013-04-20)
target_link_libraries(target library…)

Specify	that	target	needs	to	be	linked	against	one	or	more	libraries.	If	a	library	name	matches	another	target
dependencies	are	setup	automatically	so	that	the	libraries	will	be	built	first	and	target	will	be	updated
whenever	any	of	the	libraries	are.

If	the	target	is	an	executable	then	it	will	be	linked	against	the	listed	libraries.

If	the	target	is	a	library	then	its	dependency	on	these	libraries	will	be	recorded.	Then	when	something	else
links	against	target	it	will	also	link	against	target's	dependencies.	This	makes	it	much	easier	to	handle	a
library's	dependencies	since	you	only	have	to	define	them	once	when	you	define	library	itself.

For	the	moment	we	are	using	the	simplest	form	of	this	command.	For	more	information	see	the
documentation	(2013-04-20).

When	describing	add_subdirectory()	I	stated	that	the	subdirectory	must	contain	a	CMakeLists.txt	file.	So	here's	the	new
file.

1∞add_library(toDoCore ToDo.cc)

Conveniently	this	file	is	rather	simple.
add_library(target [STATIC | SHARED | MODULE] sources…)

This	command	creates	a	new	library	target	built	from	sources.	As	you	may	have	noticed	this	command	is
very	similar	to	add_executable.

With	STATIC,	SHARED,	and	MODULE	you	can	specify	what	kind	of	library	to	build.	STATIC	libraries	are	archives	of
object	files	that	are	linked	directly	into	other	targets.	SHARED	libraries	are	linked	dynamically	and	loaded	at
runtime.	MODULE	libraries	are	plug-ins	that	aren't	linked	against	but	can	be	loaded	dynamically	at	runtime.

If	the	library	type	is	not	specified	it	will	be	either	STATIC	or	SHARED.	The	default	type	is	controlled	by	the
BUILD_SHARED_LIBS	variable.	By	default	static	libraries	are	created.

add_library()	documentation	(2013-04-20)

Testing	–	for	Real
We	have	a	rudimentary	test	but	if	we	were	really	developing	software	we'd	write	a	real	test	using	a	real	testing
framework.	As	mentioned	earlier	we	will	use	Google	Test	1.6.0	and	Google	Mock	1.6.0.	Conveniently	they	include
their	own	CMakeLists.txt	files,	which	makes	them	easy	for	us	to	use.

First	the	test:

1∞#include "ToDoCore/ToDo.h"

2∞

3∞#include <string>

4∞  using std::string;

5∞

6∞#include <gmock/gmock.h>

7∞  using ::testing::Eq;

8∞#include <gtest/gtest.h>

CMake Tutorial

49 Chapter 4: Libraries and Subdirectories

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:CMAKE_CURRENT_SOURCE_DIR
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_subdirectory
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:target_link_libraries
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:BUILD_SHARED_LIBS
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_library
https://code.google.com/p/googletest/
https://code.google.com/p/googlemock/


8∞#include <gtest/gtest.h>

9∞  using ::testing::Test;

10∞

11∞

12∞namespace ToDoCore

13∞{

14∞namespace testing

15∞{

16∞    class ToDoTest : public Test

17∞    {

18∞    protected:

19∞        ToDoTest(){}

20∞        ~ToDoTest(){}

21∞

22∞        virtual void SetUp(){}

23∞        virtual void TearDown(){}

24∞

25∞

26∞        ToDo list;

27∞

28∞        static const size_t taskCount = 3;

29∞        static const string tasks[taskCount];

30∞    };

31∞

32∞    const string ToDoTest::tasks[taskCount] = {"write code",

33∞                                               "compile",

34∞                                               "test"};

35∞

36∞

37∞    TEST_F(ToDoTest, constructor_createsEmptyList)

38∞    {

39∞        EXPECT_THAT(list.size(), Eq(size_t(0)));

40∞    }

41∞

42∞    TEST_F(ToDoTest, addTask_threeTimes_sizeIsThree)

43∞    {

44∞        list.addTask(tasks[0]);

45∞        list.addTask(tasks[1]);

46∞        list.addTask(tasks[2]);

47∞

48∞        EXPECT_THAT(list.size(), Eq(taskCount));

49∞    }

50∞

51∞    TEST_F(ToDoTest, getTask_withOneTask_returnsCorrectString)

52∞    {

53∞        list.addTask(tasks[0]);

54∞

55∞        ASSERT_THAT(list.size(),     Eq(size_t(1)));

56∞        EXPECT_THAT(list.getTask(0), Eq(tasks[0]));

57∞    }

58∞

59∞    TEST_F(ToDoTest, getTask_withThreeTasts_returnsCorrectStringForEachIndex)

60∞    {

61∞        list.addTask(tasks[0]);

62∞        list.addTask(tasks[1]);

63∞        list.addTask(tasks[2]);

64∞

65∞        ASSERT_THAT(list.size(),     Eq(taskCount));

66∞        EXPECT_THAT(list.getTask(0), Eq(tasks[0]));

67∞        EXPECT_THAT(list.getTask(1), Eq(tasks[1]));

68∞        EXPECT_THAT(list.getTask(2), Eq(tasks[2]));

69∞    }

70∞

71∞} // namespace testing

72∞} // namespace ToDoCore

This	is	a	rather	simple	test,	but	ToDo	is	still	a	rather	simple	class.	It	may	look	strange	if	you	are	unfamiliar	with
Google	Test,	taking	a	look	at	Google	Test	Primer	may	be	helpful.	I	also	use	a	little	functionality	from	Google	Mock
so	Google	Mock	for	Dummies	may	also	be	useful.

Now	we	need	to	build	the	test:

CMake Tutorial

50 Chapter 4: Libraries and Subdirectories

https://code.google.com/p/googletest/wiki/V1_6_Primer
https://code.google.com/p/googlemock/wiki/V1_6_ForDummies


ToDoCore/CMakeLists.txt New or modified lines in bold.

ToDoCore/unit_test/CMakeLists.txt

1∞add_library(toDoCore ToDo.cc)

2∞

3∞add_subdirectory(unit_test)

1∞set(GMOCK_DIR "../../../../../gmock/gmock-1.6.0"

2∞    CACHE PATH "The path to the GoogleMock test framework.")

3∞

4∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

5∞    # force this option to ON so that Google Test will use /MD instead of /MT

6∞    # /MD is now the default for Visual Studio, so it should be our default, too

7∞    option(gtest_force_shared_crt

8∞           "Use shared (DLL) run-time lib even when Google Test is built as static lib."

9∞           ON)

10∞elseif (APPLE)

11∞    add_definitions(-DGTEST_USE_OWN_TR1_TUPLE=1)

12∞endif()

13∞add_subdirectory(${GMOCK_DIR} ${CMAKE_BINARY_DIR}/gmock)

14∞

15∞include_directories(SYSTEM ${GMOCK_DIR}/gtest/include

16∞                           ${GMOCK_DIR}/include)

17∞

18∞

19∞add_executable(ToDoTest ToDoTest.cc)

20∞target_link_libraries(ToDoTest toDoCore

21∞                               gmock_main)

22∞

23∞add_test(ToDoTest ToDoTest)

First	we	add	the	Google	Mock	directory	to	our	project	then	we	add	our	test.	The	path	to	Google	Mock	is	stored	in	a
cached	variable	so	that	you	can	easily	set	it	to	the	correct	value	either	from	the	command	line	or	via	one	of	the
GUIs.	There	are	several	potential	problems	with	that	line	but	we	will	worry	about	those	later,	for	now	it's	good
enough.	Okay	I	oversimplified	a	little.	We	don't	just	add	the	Google	Mock	directory,	we	also	work	around	some
OS-specific	problems.

When	using	Visual	Studio	to	build	our	test	we	would	run	into	a	problem.	Even	when	building	static	libraries,
CMake's	default,	MSVC	defaults	to	linking	against	the	multi-threaded,	DLL-specific	version	of	the	standard	library.
By	default	Google	Test	overrides	this	so	that	the	non-DLL	version	of	the	multi-threaded	standard	library	is	used.
Then	when	our	test	links	against	both	toDoCore	and	gmock_main	the	linker	will	output	a	large	number	of	errors	since	we
would	be	linking	against	two	different	copies	of	the	standard	library.	To	avoid	this	problem	we	force	Google	Test	to
use	the	DLL-specific	version	to	match	Visual	Studio's	default	by	setting	the	gtest_force_shared_crt	option	to	ON.	See
Microsoft	C/C++	Compiler	Run-Time	Library.

The	second	problem	occurs	on	newer	version	of	Mac	OS	X	which	default	to	using	a	different	standard	library	that
fully	supports	C++11.	GTest	uses	the	tuple	class	from	the	draft	TR1	standard	and	therefore	looks	for	it	in	the
std::tr1	namespace.	The	tr1	namespace	is	not	present	in	the	C++11	standard	library	that	Apple	uses	so	GTest
cannot	find	it	and	won't	compile.	We	fix	this	by	telling	GTest	to	use	its	own	tuple	implementation.
add_subdirectory(source_dir [binary_dir])

Add	the	directory	source_dir	to	the	current	project	with	binary_dir	as	its	corresponding	binary	output
directory.	When	adding	a	directory	that	is	a	subdirectory	of	the	current	directory	CMake	will	automatically
determine	what	the	binary	output	directory	should	be,	making	the	second	argument	optional.	However	if	you
add	a	directory	that	isn't	a	subdirectory	you	need	to	specify	the	binary	output	directory.

add_subdirectory	documentation	(2013-04-20)
CMAKE_BINARY_DIR

This	variable	holds	the	path	to	the	top	level	binary	output	directory,	i.e.	the	directory	in	which	you	ran	the
cmake	command	or	the	path	you	chose	for	"Where	to	build	the	binaries"	in	the	GUI.

CMAKE_BINARY_DIR	documentation	(2013-04-27)
include_directories([AFTER|BEFORE] [SYSTEM] directory…)

AFTER|BEFORE

CMake Tutorial

51 Chapter 4: Libraries and Subdirectories

http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_subdirectory
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:CMAKE_BINARY_DIR


Specify	whether	or	not	these	include	directories	should	be	appended	or	prepended	to	the	list	of
include	directories.	If	omitted	then	the	default	behavior	is	used.

By	default	directories	are	appended	to	the	list.	This	behavior	can	be	changed	by	setting
CMAKE_INCLUDE_DIRECTORIES_BEFORE	to	TRUE.

SYSTEM

Specify	that	these	directories	are	system	include	directories.	This	only	has	an	affect	on
compilers	that	support	the	distinction.	This	can	change	the	order	in	which	the	compiler	searches
include	directories	or	the	handling	of	warnings	from	headers	found	in	these	directories.

directory…

The	directories	to	be	added	to	the	list	of	include	directories.

include_directories()	documentation	(2013-04-20)
option(name docstring [initialValue])

Provide	a	boolean	option	to	the	user.	This	will	be	displayed	in	the	GUI	as	a	checkbox.	Once	created	the
value	of	the	option	can	be	accessed	as	the	variable	name.	The	docstring	will	be	displayed	in	the	GUI	to	tell	the
user	what	this	option	does.	If	no	initial	value	is	provided	it	defaults	to	OFF.

While	this	boolean	option	is	stored	in	the	cache	and	accessible	as	a	variable	you	cannot	override	the
initialValue	by	setting	a	variable	of	the	same	name	beforehand,	not	even	by	passing	a	-D	command	line
option	to	CMake.	Which	is	why	we	have	to	define	the	option	ourselves	before	Google	Test	does.

option()	documentation	(2013-05-3)
add_definitions(flags…)

Add	preprocessor	definitions	to	the	compiler	command	line	for	targets	in	the	current	directory	and	those
below	it.	While	this	command	is	intended	for	adding	definitions	you	still	need	to	precede	them	with	-D.

Because	this	command	modifies	the	COMPILE_DEFINITIONS	directory	property	it	affects	all	targets	in	the
directory,	even	those	that	were	defined	before	this	command	was	used.	If	this	is	not	the	desired	effect	then
modifying	the	COMPILE_DEFINITIONS	property	of	particular	targets	or	source	files	will	work	better.	(Properties
are	introduced	below.)

add_definitions()	documentation	(2014-09-28)

COMPILE_DEFINITIONS	directory	property	documentation	(2014-09-28)

COMPILE_DEFINITIONS	target	property	documentation	(2014-09-28)

COMPILE_DEFINITIONS	source	file	property	documentation	(2014-09-28)

Let's	go	ahead	and	try	out	our	new	test!	

CMake Tutorial

52 Chapter 4: Libraries and Subdirectories

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:include_directories
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:option
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_definitions
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#prop_dir:COMPILE_DEFINITIONS
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#prop_tgt:COMPILE_DEFINITIONS
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#prop_sf:COMPILE_DEFINITIONS


 > mkdir build

 > cd build

 > cmake -G "Unix Makefiles" ..

-- The C compiler identification is Clang 4.2.0

-- The CXX compiler identification is Clang 4.2.0

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Found PythonInterp: /usr/local/bin/python (found version "2.7.3")

-- Looking for include file pthread.h

-- Looking for include file pthread.h - found

-- Looking for pthread_create

-- Looking for pthread_create - found

-- Found Threads: TRUE

-- Configuring done

-- Generating done

-- Build files have been written to: /Documents/Programming/C++/CMake Tutorial/flavors/part4_step2/build

 > make

Scanning dependencies of target toDoCore

[ 14%] Building CXX object ToDoCore/CMakeFiles/toDoCore.dir/ToDo.cc.o

Linking CXX static library libtoDoCore.a

[ 14%] Built target toDoCore

Scanning dependencies of target toDo

[ 28%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

Linking CXX executable toDo

[ 28%] Built target toDo

Scanning dependencies of target gtest

[ 42%] Building CXX object gmock/gtest/CMakeFiles/gtest.dir/src/gtest-all.cc.o

In file included from /Documents/Programming/C++/gmock/gmock-1.6.0/gtest/src/gtest-all.cc:42:

In file included from /Documents/Programming/C++/gmock/gmock-1.6.0/gtest/src/gtest.cc:132:

/Documents/Programming/C++/gmock/gmock-1.6.0/gtest/src/gtest-internal-inl.h:206:8: error: 

      private field 'pretty_' is not used [-Werror,-Wunused-private-field]

  bool pretty_;

       ^

1 error generated.

make[2]: *** [gmock/gtest/CMakeFiles/gtest.dir/src/gtest-all.cc.o] Error 1

make[1]: *** [gmock/gtest/CMakeFiles/gtest.dir/all] Error 2

make: *** [all] Error 2

Oh	noes!	Newer	versions	of	Clang	have	some	pretty	strict	warnings	and	we	have	just	run	afoul	of	one.	So	we	have	a
problem:	we	want	to	use	strict	compiler	settings	to	ensure	we	write	good	code	but	we	also	don't	want	to	go	changing
Google	Test.	As	it	turns	out	CMake	actually	provides	us	the	flexibility	we	need	to	disable	warnings	for	just	the	gtest
target.

This	is	a	capability	that	can	easily	be	abused.	In	the	case	of	Google	Test	we	didn't	write	it	and	we	know,	or	at	least
assume,	that	it	works	fine.	Because	of	that	we	don't	care	about	any	warnings	we	might	find	in	Google	Test's	code.
We	need	to	be	careful	not	to	use	this	feature	to	allow	ourselves	to	write	poor	code.

CMake Tutorial

53 Chapter 4: Libraries and Subdirectories



ToDoCore/unit_test/CMakeLists.txt New or modified lines in bold.

1∞set(GMOCK_DIR "../../../../../gmock/gmock-1.6.0"

2∞    CACHE PATH "The path to the GoogleMock test framework.")

3∞

4∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

5∞    # force this option to ON so that Google Test will use /MD instead of /MT

6∞    # /MD is now the default for Visual Studio, so it should be our default, too

7∞    option(gtest_force_shared_crt

8∞           "Use shared (DLL) run-time lib even when Google Test is built as static lib."

9∞           ON)

10∞elseif (APPLE)

11∞    add_definitions(-DGTEST_USE_OWN_TR1_TUPLE=1)

12∞endif()

13∞add_subdirectory(${GMOCK_DIR} ${CMAKE_BINARY_DIR}/gmock)

14∞set_property(TARGET gtest APPEND_STRING PROPERTY COMPILE_FLAGS " -w")

15∞

16∞include_directories(SYSTEM ${GMOCK_DIR}/gtest/include

17∞                           ${GMOCK_DIR}/include)

18∞

19∞

20∞add_executable(ToDoTest ToDoTest.cc)

21∞target_link_libraries(ToDoTest toDoCore

22∞                               gmock_main)

23∞

24∞add_test(ToDoTest ToDoTest)

set_property(TARGET gtest APPEND_STRING PROPERTY COMPILE_FLAGS " -w")

There	are	a	variety	of	things	that	have	properties	in	CMake,	in	this	case	we	are	interested	in	a	target's
properties.	Each	target	can	have	it's	own	compiler	flags	in	addition	the	ones	set	in	CMAKE_<LANG>_FLAGS.	Here
we	append	" -w"	to	gtest's	COMPILE_FLAGS.	The	flag	"-w"	disables	all	warnings	for	both	GCC	and	Clang.	When
compiling	with	MSVC	the	"-w"	will	be	automatically	converted	to	"/w"	which	has	the	same	function.
(Although	it	will	warn	that	"/w"	is	overriding	"/W4")

COMPILE_FLAGS	documentation	(2013-04-28)

GCC	Warning	Options	(2013-04-28),	currently	these	work	for	Clang	too.

Microsoft	C/C++	Compiler	Warning	Level	(2013-04-28)

set_property(TARGET target_name… [APPEND|APPEND_STRING] PROPERTY name value…)

TARGET

Specify	that	we	want	to	set	the	property	of	a	target.	Several	other	types	of	things	have	properties
you	can	set.	For	the	moment	we	are	only	going	to	deal	with	targets,	but	the	concept	is	the	same
for	the	rest.

target_name…

The	name	of	the	target	whose	property	you	want	to	set.	You	can	list	multiple	targets	and	all	will
have	the	property	set	the	same	way	for	each.

[ APPEND | APPEND_STRING ]

Append	to	the	property's	existing	value	instead	of	setting	it.	APPEND	appends	to	the	property	as	a
list.	APPEND_STRING	appends	to	the	property	as	a	string.

Note:	Do	not	provide	a	multiple	values	when	using	APPEND_STRING	as	the	results	will	not	be	what
you	expect.

Don't	worry	about	lists	we	will	cover	them	in	the	next	chapter.
PROPERTY

name

The	name	of	the	property	you	want	to	set.	See	Properties	on	Targets.
value…

The	value	to	set	for	the	property.	If	multiple	values	are	provided	they	are	treated	as	a	list.	Only
provide	one	value	if	also	using	APPEND_STRING.

Don't	worry	about	lists	yet.

CMake Tutorial

54 Chapter 4: Libraries and Subdirectories

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#prop_tgt:COMPILE_FLAGS
http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
http://msdn.microsoft.com/en-us/library/thxezb7y.aspx
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#section_PropertiesonTargets


set_property()	documentation	(2013-04-28)

Let's	give	this	version	a	try.	

 > mkdir build

 > cd build

 > cmake -G "Unix Makefiles" ..

-- The C compiler identification is Clang 4.2.0

-- The CXX compiler identification is Clang 4.2.0

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Found PythonInterp: /usr/local/bin/python (found version "2.7.3")

-- Looking for include file pthread.h

-- Looking for include file pthread.h - found

-- Looking for pthread_create

-- Looking for pthread_create - found

-- Found Threads: TRUE

-- Configuring done

-- Generating done

-- Build files have been written to: /Documents/Programming/C++/CMake Tutorial/flavors/part4_step3/build

 > make

Scanning dependencies of target toDoCore

[ 14%] Building CXX object ToDoCore/CMakeFiles/toDoCore.dir/ToDo.cc.o

Linking CXX static library libtoDoCore.a

[ 14%] Built target toDoCore

Scanning dependencies of target toDo

[ 28%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

Linking CXX executable toDo

[ 28%] Built target toDo

Scanning dependencies of target gtest

[ 42%] Building CXX object gmock/gtest/CMakeFiles/gtest.dir/src/gtest-all.cc.o

Linking CXX static library libgtest.a

[ 42%] Built target gtest

Scanning dependencies of target gmock

[ 57%] Building CXX object gmock/CMakeFiles/gmock.dir/src/gmock-all.cc.o

Linking CXX static library libgmock.a

[ 57%] Built target gmock

Scanning dependencies of target gmock_main

[ 71%] Building CXX object gmock/CMakeFiles/gmock_main.dir/src/gmock_main.cc.o

Linking CXX static library libgmock_main.a

[ 71%] Built target gmock_main

Scanning dependencies of target ToDoTest

[ 85%] Building CXX object ToDoCore/unit_test/CMakeFiles/ToDoTest.dir/ToDoTest.cc.o

Linking CXX executable ToDoTest

[ 85%] Built target ToDoTest

Scanning dependencies of target gtest_main

[100%] Building CXX object gmock/gtest/CMakeFiles/gtest_main.dir/src/gtest_main.cc.o

Linking CXX static library libgtest_main.a

[100%] Built target gtest_main

 > make test

Running tests...

Test project /Documents/Programming/C++/CMake Tutorial/flavors/part4_step3/build

    Start 1: ToDoTest

1/1 Test #1: ToDoTest .........................   Passed    0.00 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) =   0.01 sec

 > ToDoCore/unit_test/ToDoTest

Running main() from gmock_main.cc

[==========] Running 4 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 4 tests from ToDoTest

[ RUN      ] ToDoTest.constructior_createsEmptyList

[       OK ] ToDoTest.constructior_createsEmptyList (0 ms)

CMake Tutorial

55 Chapter 4: Libraries and Subdirectories

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:set_property


[       OK ] ToDoTest.constructior_createsEmptyList (0 ms)

[ RUN      ] ToDoTest.addTask_threeTimes_sizeIsThree

[       OK ] ToDoTest.addTask_threeTimes_sizeIsThree (0 ms)

[ RUN      ] ToDoTest.getTask_withOneTask_returnsCorrectString

[       OK ] ToDoTest.getTask_withOneTask_returnsCorrectString (0 ms)

[ RUN      ] ToDoTest.getTask_withThreeTasts_returnsCorrectStringForEachIndex

[       OK ] ToDoTest.getTask_withThreeTasts_returnsCorrectStringForEachIndex (1 ms)

[----------] 4 tests from ToDoTest (1 ms total)

[----------] Global test environment tear-down

[==========] 4 tests from 1 test case ran. (1 ms total)

[  PASSED  ] 4 tests.

Yay!	Everything	works	now	and	our	test	passes,	too.

Next	we	will	focus	on	how	we	could	add	more	unit	tests	(if	we	had	more	units)	without	duplicating	the	work	we've
done	here.	Also	we	will	make	it	so	that	our	unit	tests	are	automatically	run	as	needed	whenever	we	build.

CMake Tutorial

56 Chapter 4: Libraries and Subdirectories



Chapter	5:	Functionally	Improved	Testing
Introduction

Last	time	we	added	a	nice	unit	test	and	then	set	up	CMake	to	build	it,	of	course,	and	add	it	to	the	list	of	tests	that
CTest	will	run.	This	is	great,	now	we	can	run	cmake	then	use	make	and	make test	to	test	our	project.	Now	it's	time	to
build	on	our	success	because	we	certainly	aren't	done	yet.

The	main	problem	we	need	to	tackle	is	that	there	are	currently	3	steps	to	creating	a	test	program:

1.	 add	the	executable	target
2.	 link	the	executable	against	the	"gmock_main"	library
3.	 add	the	test	to	CTest's	list	of	tests

That's	3	steps	too	many.	If	you	are	thinking	that	3	steps	aren't	too	many	remember	that	any	project	of	a	useful	size
will	have	a	rather	large	number	of	unit	tests,	each	of	which	will	require	these	same	3	steps	–	that's	a	lot	of	repetition.
As	programmers	we	should	not	repeat	ourselves,	and	we	shouldn't	slack	off	just	because	we	are	merely	setting	up
our	build	system.	What	we	want	is	the	ability	to	add	a	new	test	in	a	single	step.	Writing	the	test	is	hard	enough,
building	and	running	it	should	be	easy.

Lucky	for	us	CMake	offers	the	ability	to	write	functions.	So	we	will	start	by	writing	a	function	that	combines	these
3	steps	so	that	only	one	step	will	be	needed.	Once	we	have	the	function	we	will	improve	it	further	taking	advantage
of	the	fact	that	we	will	only	have	to	write	said	improvements	once.

A	Simple	Function
We	have	3	simple	steps	to	encapsulate	in	a	function,	that	should	be	simple,	right?

CMake Tutorial

57 Chapter 5: Functionally Improved Testing



ToDoCore/unit_test/CMakeLists.txt New or modified lines in bold.

1∞set(GMOCK_DIR "../../../../../gmock/gmock-1.6.0"

2∞    CACHE PATH "The path to the GoogleMock test framework.")

3∞

4∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

5∞    # force this option to ON so that Google Test will use /MD instead of /MT

6∞    # /MD is now the default for Visual Studio, so it should be our default, too

7∞    option(gtest_force_shared_crt

8∞           "Use shared (DLL) run-time lib even when Google Test is built as static lib."

9∞           ON)

10∞elseif (APPLE)

11∞    add_definitions(-DGTEST_USE_OWN_TR1_TUPLE=1)

12∞endif()

13∞add_subdirectory(${GMOCK_DIR} ${CMAKE_BINARY_DIR}/gmock)

14∞set_property(TARGET gtest APPEND_STRING PROPERTY COMPILE_FLAGS " -w")

15∞

16∞include_directories(SYSTEM ${GMOCK_DIR}/gtest/include

17∞                           ${GMOCK_DIR}/include)

18∞

19∞

20∞#

21∞# add_gmock_test(<target> <sources>...)

22∞#

23∞#  Adds a Google Mock based test executable, <target>, built from <sources> and

24∞#  adds the test so that CTest will run it. Both the executable and the test

25∞#  will be named <target>.

26∞#

27∞function(add_gmock_test target)

28∞    add_executable(${target} ${ARGN})

29∞    target_link_libraries(${target} gmock_main)

30∞

31∞    add_test(${target} ${target})

32∞endfunction()

33∞

34∞

35∞add_gmock_test(ToDoTest ToDoTest.cc)

36∞target_link_libraries(ToDoTest toDoCore)

I	like	to	put	comments	before	my	functions	that	show	how	they	should	be	called	and	explain	what	they	do.
function(add_gmock_test target)

Start	the	definition	of	the	function	add_gmock_test	with	one	required	parameter	target.

Inside	the	function	its	first	argument	is	available	as	the	variable	target	and	the	rest	of	the	arguments	are
available	in	a	list	stored	in	the	variable	ARGN.	CMake	will	allow	you	to	pass	more	arguments	to	a	function
than	the	number	of	parameters	it	defined.	It	is	up	to	the	writer	of	the	function	to	handle	all	of	them,	validate
them	and	produce	an	error	if	they	aren't	correct,	or	merely	ignore	them.	In	this	case	we	are	just	passing	them
all	on	to	the	command	add_executable().

Also	available	is	the	variable	ARGC	which	holds	the	count	of	all	arguments	passed	to	the	function,	both	ones
matching	parameters	and	any	extras.	Additionally	each	argument	can	be	accessed	via	the	variables	ARGV0,
ARGV1,	...	ARGVN.	As	if	that	weren't	enough	ways	to	access	function	arguments	all	arguments	are	also	available
as	a	list	stored	in	the	variable	ARGV.	This	affords	a	lot	of	flexibility	but	can	make	argument	validation	and
handling	difficult.

function()	documentation	(2013-06-01)
endfunction()

Ends	the	definition	of	a	function.	As	I've	said	before	CMake's	syntax	is	a	bit	strange.	You	can	pass	the	name
of	the	function	as	an	argument	to	this	command,	but	it	is	not	required.	If	you	do	it	should	match	otherwise
CMake	will	print	a	warning	when	configuring.	I	think	it's	easier	to	read	if	no	arguments	are	passed	to
endfunction()	and	functions	shouldn't	be	long	enough	that	a	reminder	of	what	function	is	being	ended	is
needed.

endfunction()	documentation	(2013-06-01)
add_gmock_test(ToDoTest ToDoTest.cc)

CMake Tutorial

58 Chapter 5: Functionally Improved Testing

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:function
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:endfunction


Now	we	use	the	function	we	just	wrote	to	add	our	Google	Mock	based	test.	With	the	function	written	it	is
now	much	simpler	as	we	don't	need	to	write	out	the	three	separate	commands	every	time.

target_link_libraries(ToDoTest toDoCore)

We	still	have	to	link	our	test	with	the	"toDoCore"	library.	Since	this	is	specific	to	this	test	and	not	all	tests	it
wouldn't	make	sense	to	include	this	in	our	function.

Commands	and	Functions	and	Macros!	Oh	my!
So	far	we	have	seen	several	CMake	commands	and	now	even	written	a	function!	You	may	wonder	what	the
difference	is	between	a	command	and	a	function.	Simply	put	commands	are	built	into	CMake	and	functions	are
written	using	CMake's	language.	While	some	commands	behave	quite	similarly	to	functions,	e.g.	add_executable,
some	others	behave	in	ways	that	cannot	be	mimicked	using	functions	or	macros,	e.g.	if()	and	function().

Macros,	on	the	other	hand,	are	similar	to	functions	in	that	they	are	written	the	same	and	offer	all	of	the	same	ways
for	accessing	arguments.	However,	macros	don't	have	their	own	scope	and	rather	than	dereferencing	arguments
when	run	arguments	are	replaced	instead.	The	first	difference	is	what	makes	macros	both	useful	and	dangerous,	the
second	is	more	subtle	and	can	make	working	with	lists	difficult.	(Yes,	I	know.	I	haven't	talked	about	lists	yet.)

You	can't	add	commands,	but	you	can	create	functions	and	macros.	As	a	rule	of	thumb	do	not	use	a	macro	unless
absolutely	necessary,	then	you	will	avoid	many	problems.

Scope
Scope	is	interesting	in	CMake	and	can	occasionally	be	confusing.	There's	local	scope,	directory	scope,	global	scope,
and	cache	scope.	As	with	most	languages	things	are	inherited	from	enclosing	scopes.	For	example	if	you	were	to	set
someVariable	to	"some	value"	and	then	call	someFunction()	inside	the	function	dereferencing	someVariable	would	yield
"some	value".

Local	Scope
This	refers	to	the	most	narrow	scope	at	a	given	location.	So	the	current	function	or	directory	if	not	inside	a	function.
Note	that	conditionals,	loops,	and	macros	do	not	create	a	new	scope,	which	is	important	to	remember.	When	you	set
a	variable	this	is	the	scope	that	is	affected.

Parent	Scope
The	scope	enclosing	the	current	local	scope.	For	example	the	scope	that	called	the	current	function	or	the	directory
that	executed	the	most	recent	add_subdirectory()	command.	This	is	important	because	the	set()	command	can	be
used	to	set	variables	in	the	parent	scope.	In	fact	this	is	the	only	way	to	return	values	from	a	function.
set(variable values… PARENT_SCOPE)

set()	documentation	(2013-06-01)

Directory	Scope
This	is	the	scope	of	the	current	directory	being	processed	by	CMake	which	is	used	by	directory	properties	and
macros.	The	confusing	thing	is	that	some	commands	affect	directory	properties,	such	as	add_definitions()	and
remove_definitions().	Many	of	these	properties	affect	the	targets	created	within	this	directory	scope	but	only	take
effect	when	generating.	So	if	you	create	a	target	and	then	use	the	add_definitions()	command	those	definitions	will
apply	to	the	target	created	previously.	It	is	less	confusing	if	things	that	affect	directory	scope	are	done	before
creating	any	targets	in	that	directory.	Also	do	not	mix	setting	directory	properties	and	creating	targets	inside	a
function,	either	use	separate	functions	or	set	the	corresponding	target	property.

Global	Scope
As	expected	anything	defined	with	global	scope	is	accessible	from	within	any	local	scope.	Targets,	functions,	and
global	properties	all	have	global	scope.	For	this	reason	all	targets	must	have	unique	names.	(Strictly	speaking	this	isn't
true,	however	not	all	generators	can	handle	multiple	targets	with	the	same	name.	For	maximum	compatibility	it	is	best	to	ensure
all	targets	have	unique	names.)	Functions,	on	the	other	hand,	can	be	redefined	at	will,	but	that	is	generally	not	a	good
idea.

Cache	Scope
This	is	similar	to	global	scope,	however	only	variables	can	be	stored	in	the	cache.	In	addition	the	cache	persists
between	CMake	configure	runs.	As	we	have	already	seen	some	cached	variables	can	also	be	edited	using	the
CMake	GUI	or	the	ccmake	tool.

CMake Tutorial

59 Chapter 5: Functionally Improved Testing

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:set
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_definitions
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:remove_definitions
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#prop_global:ALLOW_DUPLICATE_CUSTOM_TARGETS


cmake/Modules/gmock.cmake

Let's	Include	Some	Organization
There's	two	issues	with	what	we	have	now.	First	we've	combined	settings	and	functions	for	unit	testing	as	well	as	an
actual	target.	Second	burying	the	inclusion	of	Google	Mock	this	deep	in	our	project	makes	it	difficult	to	use	a
relative	path.	If	you	were	to	set	the	path	to	Google	Mock	on	the	command	line	using	cmake -DGMOCK_DIR=somePath	you
would	expect	the	path	to	be	relative	to	the	top	project	directory	rather	than	two	directories	deeper.	We	can	fix	both
of	these	problems	at	the	same	time.

We	will	refactor	the	code	related	to	Google	Mock	into	a	separate	file.	Which	will	resolve	problem	one.	Then	we
will	include	our	new	file	from	the	top	CMakeLists.txt	file,	which	will	address	problem	two.	The	question	is	where	to
put	this	new	file	and	what	to	call	it?	In	CMake	files	like	these	are	called	modules.	Cmake	comes	with	many	which
are	stored	in	a	directory	called	"Modules".	Many	software	projects,	on	the	other	hand,	store	CMake	related	code	in	a
directory	called	"cmake",	a	logical	name,	sometimes	this	is	done	out	of	necessity	(e.g.	if	using	ClearCase).	I	think	we
shall	put	the	file	in	cmake/Modules.	As	for	the	name	since	we	consistently	used	gmock	or	GMOCK	let's	go	with	gmock.cmake.

1∞set(GMOCK_DIR "../../../gmock/gmock-1.6.0"

2∞    CACHE PATH "The path to the GoogleMock test framework.")

3∞

4∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

5∞    # force this option to ON so that Google Test will use /MD instead of /MT

6∞    # /MD is now the default for Visual Studio, so it should be our default, too

7∞    option(gtest_force_shared_crt

8∞           "Use shared (DLL) run-time lib even when Google Test is built as static lib."

9∞           ON)

10∞elseif (APPLE)

11∞    add_definitions(-DGTEST_USE_OWN_TR1_TUPLE=1)

12∞endif()

13∞add_subdirectory(${GMOCK_DIR} ${CMAKE_BINARY_DIR}/gmock)

14∞set_property(TARGET gtest APPEND_STRING PROPERTY COMPILE_FLAGS " -w")

15∞

16∞include_directories(SYSTEM ${GMOCK_DIR}/gtest/include

17∞                           ${GMOCK_DIR}/include)

18∞

19∞

20∞#

21∞# add_gmock_test(<target> <sources>...)

22∞#

23∞#  Adds a Google Mock based test executable, <target>, built from <sources> and

24∞#  adds the test so that CTest will run it. Both the executable and the test

25∞#  will be named <target>.

26∞#

27∞function(add_gmock_test target)

28∞    add_executable(${target} ${ARGN})

29∞    target_link_libraries(${target} gmock_main)

30∞

31∞    add_test(${target} ${target})

32∞

33∞endfunction()

If	you	look	closely	the	only	change	to	this	code	you'll	notice	is	that	the	default	value	for	GMOCK_DIR	has	two	fewer
parent	directories	in	it.	It	is	now	relative	to	the	top	of	our	project	as	one	would	expect.

CMake Tutorial

60 Chapter 5: Functionally Improved Testing



CMakeLists.txt New or modified lines in bold.

1∞cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

2∞set(CMAKE_LEGACY_CYGWIN_WIN32 0)

3∞

4∞project("To Do List")

5∞

6∞list(APPEND CMAKE_MODULE_PATH ${CMAKE_SOURCE_DIR}/cmake/Modules)

7∞

8∞enable_testing()

9∞include(gmock)

10∞

11∞

12∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" OR

13∞    "${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

14∞    set(warnings "-Wall -Wextra -Werror")

15∞elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

16∞    set(warnings "/W4 /WX /EHsc")

17∞endif()

18∞if (NOT CONFIGURED_ONCE)

19∞    set(CMAKE_CXX_FLAGS "${warnings}"

20∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

21∞    set(CMAKE_C_FLAGS   "${warnings}"

22∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

23∞endif()

24∞

25∞

26∞include_directories(${CMAKE_CURRENT_SOURCE_DIR})

27∞

28∞add_subdirectory(ToDoCore)

29∞

30∞add_executable(toDo main.cc)

31∞target_link_libraries(toDo toDoCore)

32∞

33∞

34∞set(CONFIGURED_ONCE TRUE CACHE INTERNAL

35∞    "A flag showing that CMake has configured at least once.")

list(APPEND CMAKE_MODULE_PATH ${CMAKE_SOURCE_DIR}/cmake/Modules)

Lists,	finally!	Okay	not	quite	yet.	Here	we	append	the	"Modules"	directory	we	created	to	CMake's	module
path.	This	is	the	path	CMake	searches	when	you	include	a	module.

We	set	the	include	path	because,	in	the	future,	we	might	want	to	include	modules	from	other	CMakeLists.txt
in	other	directories.	This	allows	us	to	include	them	without	having	to	specify	the	full	path	every	time.

include(gmock)

This	includes	the	new	module	we	created.	When	used	this	way	CMake	searches	the	module	path	for	the	file
gmock.cmake	and	when	it	finds	the	file	it	is	included.	These	includes	are	much	like	those	done	by	the	C
preprocessor.	The	code	in	the	included	file	executes	in	the	same	scope	as	the	file	that	included	it.

list(APPEND list elements…)

Appends	the	elements	to	the	list	stored	in	the	variable	named	list.	That's	correct,	you	pass	in	the	name	of
the	list	to	be	updated,	you	do	not	dereference	it.

list()	documentation	(2013-06-04)
CMAKE_MODULE_PATH

When	including	modules	CMake	searches	for	the	requested	module	in	the	paths	in	this	list.	If	this	list	is
exhausted	then	CMake	will	look	in	the	directory	containing	the	default	modules	that	come	with	CMake.
Because	these	paths	need	to	work	anywhere	in	the	build	tree	they	must	be	absolute	paths.	Since	this	is	a	list
the	list()	command	should	be	used	to	manipulate	it.

CMAKE_MODULE_PATH	documentation	(2013-06-04)
include(module | file)

Include	the	module	or	file	in	the	current	file	being	processed.	If	a	module	name	is	provided	CMake	will
search	for	the	file	module.cmake	and	included	it	if	found.	Alternatively	if	a	file	name	is	provided	CMake	will
include	that	file	directly;	no	module	path	searching	is	required.	If	the	file	cannot	be	included	either	because

CMake Tutorial

61 Chapter 5: Functionally Improved Testing

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:list
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:CMAKE_MODULE_PATH


ToDoCore/unit_test/CMakeLists.txt

it	doesn't	exist	or	wasn't	found	CMake	will	issue	a	warning,	but	will	continue	processing.

include()	documentation	(2013-06-04)

1∞add_gmock_test(ToDoTest ToDoTest.cc)

2∞target_link_libraries(ToDoTest toDoCore)

This	file	has	gone	on	a	serious	diet.	After	moving	all	general	code	for	unit	testing	with	Google	Mock	into
gmock.cmake	this	file	became	quite	simple.

Lists!
At	long	last!	You've	been	teased	by	lists	for	2	chapters	now,	and	most	of	this	one	too.	It	is	high	time	we	discussed
lists.

CMake	has	two	data	structures	built	in:	strings	and	lists.	Well,	strictly	speaking	that	isn't	completely	true;	lists	are
semicolon	delimited	strings.	So	an	empty	string	is	also	an	empty	list	and	a	regular	string	is	a	list	with	only	one	item.
The	simplest	way	to	make	a	list	is	set(myList a b c)	which	is	exactly	the	same	as	set(myList a;b;c).	However
set(myList "a;b;c")	creates	a	list	with	just	one	item.	If	a	string	begins	with	"	it	is	treated	as	a	string	literal	and	any
spaces	or	quotes	remain	a	part	of	that	string	rather	than	causing	it	to	be	split	into	several	list	items.

Lists	are	important	to	understand	not	just	because	they	are	useful	but	also	because	all	arguments	to	commands,
functions,	and	macros	are	processed	as	a	list.	So	just	as	set(myList a b c)	is	the	same	as	set(myList a;b;c)	so	too	is
set(myList;a;b;c).	When	CMake	processes	the	call	to	the	set()	command	it	collects	all	of	the	arguments	into	a	single
list.	This	list	(ARGV)	is	the	separated	into	the	first	argument,	the	variable	name	(myList),	and	the	rest	of	the	items,	the
values	(a;b;c).	This	can	cause	trouble	if	you	pass	a	quoted	string	containing	semicolons	to	a	function	that	then	passes
it	to	another	function	without	quoting	it	as	your	string	will	become	a	list.

While	you	can	create	list	with	set(myList a b c)	I'd	strongly	recommend	using	list(APPEND myList a b c).	Using	the
list()	command	shows	that	you	are	using	the	variable	myList	as	a	list.	Naturally	the	list()	command	allows	you	to
do	other	things	with	lists.

list()	documentation	(2013-06-04)

Auto	Play
Well	really	automatic	test	running.	So	far	in	my	experience	it	takes	significantly	less	time	to	run	unit	tests	than	it
does	to	build	them.	For	this	reason	I	think	it	is	beneficial	to	run	your	unit	tests	every	time	they	are	built.	This	also
has	the	side	effect	of	stopping	your	build	if	the	unit	test	fails.

CMake Tutorial

62 Chapter 5: Functionally Improved Testing

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:include
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:list


cmake/Modules/gmock.cmake New or modified lines in bold.

1∞set(GMOCK_DIR "../../../gmock/gmock-1.6.0"

2∞    CACHE PATH "The path to the GoogleMock test framework.")

3∞

4∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

5∞    # force this option to ON so that Google Test will use /MD instead of /MT

6∞    # /MD is now the default for Visual Studio, so it should be our default, too

7∞    option(gtest_force_shared_crt

8∞           "Use shared (DLL) run-time lib even when Google Test is built as static lib."

9∞           ON)

10∞elseif (APPLE)

11∞    add_definitions(-DGTEST_USE_OWN_TR1_TUPLE=1)

12∞endif()

13∞add_subdirectory(${GMOCK_DIR} ${CMAKE_BINARY_DIR}/gmock)

14∞set_property(TARGET gtest APPEND_STRING PROPERTY COMPILE_FLAGS " -w")

15∞

16∞include_directories(SYSTEM ${GMOCK_DIR}/gtest/include

17∞                           ${GMOCK_DIR}/include)

18∞

19∞

20∞#

21∞# add_gmock_test(<target> <sources>...)

22∞#

23∞#  Adds a Google Mock based test executable, <target>, built from <sources> and

24∞#  adds the test so that CTest will run it. Both the executable and the test

25∞#  will be named <target>.

26∞#

27∞function(add_gmock_test target)

28∞    add_executable(${target} ${ARGN})

29∞    target_link_libraries(${target} gmock_main)

30∞

31∞    add_test(${target} ${target})

32∞

33∞    add_custom_command(TARGET ${target}

34∞                       POST_BUILD

35∞                       COMMAND ${target}

36∞                       WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}

37∞                       COMMENT "Running ${target}" VERBATIM)

38∞endfunction()

add_custom_command(TARGET ${target}

                   POST_BUILD

                   COMMAND ./${target}

                   WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}

                   COMMENT "Running ${target}" VERBATIM)

We	use	the	add_custom_command()	command	to	run	each	test	after	each	time	it	is	built.	Here	we	simply	run	the
test	and	if	it	fails	the	build	will	stop.	However	if	you	were	to	build	again	immediately	the	failed	test	would
not	be	run	again	and	the	build	will	continue.	Fixing	that	will	be	left	for	later.

add_custom_command(TARGET target

                   PRE_BUILD | PRE_LINK | POST_BUILD

                   COMMAND command [arguments…]

                   [COMMAND command2 [arguments…] …]

                   [WORKING_DIRECTORY directory]

                   [COMMENT comment] [VERBATIM])

target

The	name	of	the	target	to	which	we	are	adding	the	custom	command.
PRE_BUILD | PRE_LINK | POST_BUILD

When	to	run	the	custom	command.	PRE_BUILD	will	run	the	command	before	any	of	the	target's
other	dependencies.	PRE_LINK	runs	the	command	after	all	other	dependencies.	Lastly	POST_BUILD
runs	the	command	after	the	target	has	been	built.

Note:	the	PRE_BUILD	option	only	works	with	Visual	Studio	7	or	newer.	For	all	other	generators	it
is	treated	as	PRE_LINK	instead.

COMMAND command [arguments…]

The	command	to	run	and	any	arguments	to	be	passed	to	it.	If	command	specifies	an	executable

CMake Tutorial

63 Chapter 5: Functionally Improved Testing



target,	i.e.	one	created	with	the	add_executable()	command,	the	location	of	the	actual	built
executable	will	replace	the	name;	additionally	a	target	level	dependency	will	be	added	so	that
the	executable	target	will	be	built	before	this	custom	command	is	run.

Note:	target	level	dependencies	merely	control	the	order	in	which	targets	are	build.	If	a	target
level	dependency	is	rebuilt	this	command	will	not	be	re-run.

Any	number	of	commands	can	be	listed	using	this	syntax	and	they	will	all	be	run	in	order	each
time.

[ WORKING_DIRECTORY directory ]

Specify	the	working	directory	from	which	the	listed	commands	will	be	run.
[ COMMENT comment ]

Provide	a	comment	that	will	be	displayed	before	the	listed	commands	are	run.
[ VERBATIM ]

This	argument	tells	CMake	to	ensure	that	the	commands	and	their	arguments	are	escaped
appropriately	for	whichever	build	tool	is	being	used.	If	this	argument	is	omitted	the	behavior	is
platform	and	tool	specific.	Therefore	it	is	strongly	recommended	that	you	always	provide	the
VERBATIM	argument.

add_custom_command()	documentation	(2013-06-15)

Now	it's	time	to	see	our	hard	work	in	action.

CMake Tutorial

64 Chapter 5: Functionally Improved Testing

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_custom_command


 > mkdir build

 > cd build

 > cmake -G "Unix Makefiles" ..

-- The C compiler identification is Clang 4.2.0

-- The CXX compiler identification is Clang 4.2.0

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Found PythonInterp: /usr/local/bin/python (found version "2.7.3")

-- Looking for include file pthread.h

-- Looking for include file pthread.h - found

-- Looking for pthread_create

-- Looking for pthread_create - found

-- Found Threads: TRUE

-- Configuring done

-- Generating done

-- Build files have been written to: /Documents/Programming/CMake/CMake Tutorial/flavors/part5_step3/build

 > make

Scanning dependencies of target toDoCore

[ 14%] Building CXX object ToDoCore/CMakeFiles/toDoCore.dir/ToDo.cc.o

Linking CXX static library libtoDoCore.a

[ 14%] Built target toDoCore

Scanning dependencies of target toDo

[ 28%] Building CXX object CMakeFiles/toDo.dir/main.cc.o

Linking CXX executable toDo

[ 28%] Built target toDo

Scanning dependencies of target gtest

[ 42%] Building CXX object gmock/gtest/CMakeFiles/gtest.dir/src/gtest-all.cc.o

Linking CXX static library libgtest.a

[ 42%] Built target gtest

Scanning dependencies of target gmock

[ 57%] Building CXX object gmock/CMakeFiles/gmock.dir/src/gmock-all.cc.o

Linking CXX static library libgmock.a

[ 57%] Built target gmock

Scanning dependencies of target gmock_main

[ 71%] Building CXX object gmock/CMakeFiles/gmock_main.dir/src/gmock_main.cc.o

Linking CXX static library libgmock_main.a

[ 71%] Built target gmock_main

Scanning dependencies of target gtest_main

[ 85%] Building CXX object gmock/gtest/CMakeFiles/gtest_main.dir/src/gtest_main.cc.o

Linking CXX static library libgtest_main.a

[ 85%] Built target gtest_main

Scanning dependencies of target ToDoTest

[100%] Building CXX object ToDoCore/unit_test/CMakeFiles/ToDoTest.dir/ToDoTest.cc.o

Linking CXX executable ToDoTest

Running ToDoTest

Running main() from gmock_main.cc

[==========] Running 4 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 4 tests from ToDoTest

[ RUN      ] ToDoTest.constructor_createsEmptyList

[       OK ] ToDoTest.constructor_createsEmptyList (0 ms)

[ RUN      ] ToDoTest.addTask_threeTimes_sizeIsThree

[       OK ] ToDoTest.addTask_threeTimes_sizeIsThree (0 ms)

[ RUN      ] ToDoTest.getTask_withOneTask_returnsCorrectString

[       OK ] ToDoTest.getTask_withOneTask_returnsCorrectString (0 ms)

[ RUN      ] ToDoTest.getTask_withThreeTasts_returnsCorrectStringForEachIndex

[       OK ] ToDoTest.getTask_withThreeTasts_returnsCorrectStringForEachIndex (0 ms)

[----------] 4 tests from ToDoTest (0 ms total)

[----------] Global test environment tear-down

[==========] 4 tests from 1 test case ran. (0 ms total)

[  PASSED  ] 4 tests.

[100%] Built target ToDoTest

It	still	works,	just	it's	more	automatic	now.

CMake Tutorial

65 Chapter 5: Functionally Improved Testing



CMake Tutorial

66 Chapter 5: Functionally Improved Testing



main.cc

Chapter	6:	Realistically	Getting	a	Boost
Introduction

Now	that	we	have	our	testing	simplified	and	automated	we	have	a	great	foundation	upon	which	to	build	our
amazing	command	line	To	Do	list	app.	What's	that?	You	say	that	an	awesome	To	Do	app	allows	you	to	add	items	to
your	list?	Indeed	it	does,	and	more!	But	wait,	let's	not	get	ahead	of	ourselves.	We	need	to	be	able	to	accept	and
parse	command	line	options	if	this	app	is	to	be	of	any	use	at	all.

I	know	what	you	are	thinking	now:	parsing	command	line	options	is	a	drag	and	who	likes	parsing	stuff	anyway?
Well	we	are	in	luck	as	the	Boost	Program	Options	library	will	do	all	the	hard	work	for	us.	All	we	need	to	do	is
rewrite	our	main	function	to	be	something	useful,	let	the	library	do	the	parsing	and	our	app	will	be	on	it's	way	to	the
top	10	list.	Okay,	I	might	be	exaggerating	that	last	one.

Boosting	the	Command	Line
Okay,	that	section	title	may	be	a	little	over	the	top.	Our	main	function	has	languished	while	we	set	up	testing	and
streamlined	our	CMake.	Now	it's	time	to	turn	attention	back	to	it	and	what	we	find	is	that	it	needs	to	be	gutted	and
re-done,	much	like	an	old	kitchen.	Since	we	have	better	tests	we	don't	need	the	one	in	main	anymore.	We	will
update	main	to	have	two	command	line	options:	--add,	which	will	add	a	new	entry	to	the	to	do	list,	and	--help,	which
will	do	what	you'd	expect.

1∞#include <iostream>

2∞  using std::cerr;

3∞  using std::cout;

4∞  using std::endl;

5∞#include <string>

6∞  using std::string;

7∞

8∞#include <boost/program_options.hpp>

9∞  namespace po = boost::program_options;

10∞

11∞#include "ToDoCore/ToDo.h"

12∞  using ToDoCore::ToDo;

13∞

14∞int main(

15∞    int    argc,

16∞    char** argv

17∞)

18∞{

19∞    po::options_description desc("Options");

20∞    desc.add_options()

21∞        ("help,h", "display this help")

22∞        ("add,a", po::value< string >(), "add a new entry to the To Do list")

23∞        ;

24∞

25∞    bool parseError = false;

26∞    po::variables_map vm;

27∞    try

28∞    {

29∞        po::store(po::parse_command_line(argc, argv, desc), vm);

30∞        po::notify(vm);

31∞    }

32∞    catch (po::error& error)

33∞    {

34∞        cerr << "Error: " << error.what() << "\n" << endl;

35∞        parseError = true;

36∞    }

37∞

38∞    if (parseError || vm.count("help"))

39∞    {

40∞        cout << "todo:  A simple To Do list program" << "\n";

41∞        cout                                         << "\n";

CMake Tutorial

67 Chapter 6: Realistically Getting a Boost

http://www.boost.org/doc/libs/1_54_0/doc/html/program_options.html


∞        cout                                         << "\n";

42∞        cout << "Usage:"                             << "\n";

43∞        cout << "  " << argv[0] << " [options]"      << "\n";

44∞        cout                                         << "\n";

45∞        cout << desc                                 << "\n";

46∞

47∞        if (parseError)

48∞        {

49∞            return 64;

50∞        }

51∞        else

52∞        {

53∞            return 0;

54∞        }

55∞    }

56∞

57∞

58∞    ToDo list;

59∞

60∞    list.addTask("write code");

61∞    list.addTask("compile");

62∞    list.addTask("test");

63∞

64∞    if (vm.count("add"))

65∞    {

66∞        list.addTask(vm["add"].as< string >());

67∞    }

68∞

69∞    for (size_t i = 0; i < list.size(); ++i)

70∞    {

71∞        cout << list.getTask(i) << "\n";

72∞    }

73∞    return 0;

74∞}

Boost	Program	Options	makes	it	easier	to	parse	command	line	options	than	it	would	be	to	do	it	by	hand.	Now	that
we	have	the	required	--help	option	and	the	--add	our	app	is	a	bit	more	useful.

There's	a	new	problem	now.	How	will	we	link	our	app	against	Boost?	As	it	turns	out	CMake	has	a	command	for
finding	things	like	Boost:	the	find_package()	command.	Let's	see	how	it	works.

CMake Tutorial

68 Chapter 6: Realistically Getting a Boost

http://www.boost.org/doc/libs/1_53_0/doc/html/program_options.html


CMakeLists.txt New or modified lines in bold.

1∞cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

2∞set(CMAKE_LEGACY_CYGWIN_WIN32 0)

3∞

4∞project("To Do List")

5∞

6∞list(APPEND CMAKE_MODULE_PATH ${CMAKE_SOURCE_DIR}/cmake/Modules)

7∞

8∞enable_testing()

9∞include(gmock)

10∞

11∞

12∞if (NOT DEFINED     BOOST_ROOT        AND

13∞    NOT DEFINED ENV{BOOST_ROOT}       AND

14∞    NOT DEFINED     BOOST_INCLUDEDIR  AND

15∞    NOT DEFINED ENV{BOOST_INCLUDEDIR} AND

16∞    NOT DEFINED     BOOST_LIBRARYDIR  AND

17∞    NOT DEFINED ENV{BOOST_LIBRARYDIR})

18∞    if (APPLE)

19∞        set(BOOST_ROOT "../../../boost/boost_1_54_0/mac")

20∞    elseif (WIN32)

21∞        set(BOOST_INCLUDEDIR "C:/local/boost_1_55_0")

22∞        set(BOOST_LIBRARYDIR "C:/local/boost_1_55_0/lib32-msvc-10.0")

23∞    endif()

24∞endif()

25∞if (APPLE OR WIN32)

26∞    set(Boost_USE_STATIC_LIBS TRUE)

27∞endif()

28∞find_package(Boost 1.32 REQUIRED COMPONENTS program_options)

29∞include_directories(SYSTEM ${Boost_INCLUDE_DIRS})

30∞

31∞if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" OR

32∞    "${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

33∞    set(warnings "-Wall -Wextra -Werror")

34∞elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")

35∞    set(warnings "/W4 /wd4512 /WX /EHsc")

36∞        # Disabled Warnings:

37∞        #   4512 "assignment operator could not be generated"

38∞        #        This warning provides no useful information and will occur in

39∞        #        well formed programs.

40∞        #        <http://msdn.microsoft.com/en-us/library/hsyx7kbz.aspx>

41∞endif()

42∞if (NOT CONFIGURED_ONCE)

43∞    set(CMAKE_CXX_FLAGS "${warnings}"

44∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

45∞    set(CMAKE_C_FLAGS   "${warnings}"

46∞        CACHE STRING "Flags used by the compiler during all build types." FORCE)

47∞endif()

48∞

49∞

50∞include_directories(${CMAKE_CURRENT_SOURCE_DIR})

51∞

52∞add_subdirectory(ToDoCore)

53∞

54∞add_executable(toDo main.cc)

55∞target_link_libraries(toDo toDoCore ${Boost_LIBRARIES})

56∞

57∞

58∞set(CONFIGURED_ONCE TRUE CACHE INTERNAL

59∞    "A flag showing that CMake has configured at least once.")

find_package(Boost 1.32 REQUIRED COMPONENTS program_options)

This	command	searches	for	Boost,	both	the	headers	and	the	boost_program_options	library,	and	then	defines
variables	that	indicate	whether	or	not	Boost	has	been	found	and	if	so	describe	the	locations	of	the	libraries
and	header	files.

include_directories(SYSTEM ${Boost_INCLUDE_DIRS})

Add	the	paths	to	Boost's	include	files	to	the	compiler's	include	search	paths.

By	using	the	SYSTEM	argument	CMake	will	tell	the	compiler,	if	possible,	that	these	paths	contain	system

CMake Tutorial

69 Chapter 6: Realistically Getting a Boost



include	files.	Oftentimes	the	compiler	will	ignore	warnings	from	files	found	in	system	include	paths.

The	SYSTEM	option	does	not	have	an	effect	with	all	generators.	When	using	the	Visual	Studio	10	or	the	Xcode
generators	neither	Visual	Studio	nor	Xcode	appear	to	treat	system	include	paths	any	differently	than	regular
include	paths.	This	can	make	a	big	difference	when	compiler	flags	are	set	to	treat	warnings	as	errors.

target_link_libraries(toDo ${Boost_LIBRARIES} toDoCore)

This	links	our	little	app,	toDo,	with	the	Boost	libraries.	In	this	case	just	boost_program_options	since	that's	the
only	compiled	library	we	requested.	It	also	links	toDo	with	our	toDoCore	library.	Naturally	we	need	this	as
that	library	implements	all	of	our	to	do	list	functionality.

find_package(package [version [EXACT]] [REQUIRED] [COMPONENTS components…])

package

The	name	of	the	package	to	find,	e.g.	Boost.	This	name	is	case	sensitive.

[version]

The	desired	version	of	the	package.
[EXACT]

Match	the	version	of	the	package	exactly	instead	of	accepting	a	newer	version.
[REQUIRED]

Specifying	this	option	causes	CMake's	configure	step	to	fail	if	the	package	cannot	be	found.
[COMPONENTS components…]

Some	libraries,	like	Boost,	have	optional	components.	The	find_package()	command	will	only
search	for	these	components	if	they	have	been	listed	as	arguments	when	the	command	is	called.

find_package()	documentation	(2014-11-14)

How	to	Use	FindBoost
We	glossed	over	how	to	use	FindBoost	before	and	actually	we	glossed	over	how	find_package()	really	works.
Naturally	CMake	can't	know	how	to	find	any	arbitrary	package.	So	find_package(),	as	invoked	above,	actually	loads
a	CMake	Module	file	called	FindBoost.cmake	which	does	the	actual	work	of	finding	Boost.	CMake	installations	come
with	a	good	complement	of	Find	Modules.	CMake	searches	for	FindBoost.cmake	just	as	it	would	any	module	included
using	the	include()	command.

The	documentation	for	it	can	be	obtained	using	the	command	cmake --help-module FindBoost.
set(BOOST_ROOT "../../../boost/boost_1_54_0/mac")

FindBoost	uses	the	value	of	BOOST_ROOT	as	a	hint	for	where	to	look.	It	will	search	in	BOOST_ROOT	as	well	as	the
standard	places	to	look	for	libraries.	In	this	example	I	did	not	install	Boost	in	a	standard	location	on	my	Mac
so	I	needed	to	tell	FindBoost	where	to	look.

set(BOOST_INCLUDEDIR "C:/local/boost_1_55_0")

If	your	installation	of	boost	is	not	stored	in	the	“normal”	folders,	i.e.	include	and	lib,	you	will	need	to	specify
the	directory	that	contains	the	include	files	separately.	Since	libraries	don't	seem	to	have	a	standard
installation	location	on	Windows	as	they	do	on	Linux	we	needed	to	tell	FindBoost	where	Boost's	header
files	are.	Usually	when	providing	BOOST_INCLUDEDIR	BOOST_ROOT	isn't	needed.	If	you	are	using	any	of	Boost's
compiled	libraries	you	will	also	need	BOOST_LIBRARYDIR.

set(BOOST_LIBRARYDIR "C:/local/boost_1_55_0/lib32-msvc-10.0")

The	same	as	BOOST_INCLUDEDIR,	if	specifying	BOOST_ROOT	doesn't	find	the	libraries	then	you	will	have	to	specify
the	BOOST_LIBRARYDIR.

set(Boost_USE_STATIC_LIBS TRUE)

By	default	FindBoost	provides	the	paths	to	dynamic	libraries,	however	you	can	set	Boost_USE_STATIC_LIBS	to
true	so	that	FindBoost	will	provide	the	paths	to	the	static	libraries	instead.

We	want	to	use	the	static	libraries	on	Mac	OS	X	(APPLE)	because	when	Boost	is	installed	on	the	Mac	the

CMake Tutorial

70 Chapter 6: Realistically Getting a Boost

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package


dynamic	libraries	are	not	configured	properly	and	our	app	would	not	run	if	we	were	to	link	against	them.

On	Windows	we	are	linking	with	static	libraries	so	Visual	Studio	will	look	for	the	static	Boost	libraries.
Since	FindBoost	normally	provides	the	paths	to	Boost's	dynamic	libraries	linking	would	fail.	By	specifying
that	we	want	the	static	libraries	linking	will	succeed	and	we	can	use	our	new	command	line	arguments.

There	are	several	other	variables	that	affect	how	FindBoost	works,	but	they	aren't	needed	as	often.	Consult	the
documentation	for	more	information.

FindBoost	documentation	(2015-03-02)
include_directories(SYSTEM ${Boost_INCLUDE_DIRS})

We	add	the	paths	to	where	the	Boost	header	files	are.	These	assume	that	your	include	directives	are	of	the
canonical	form	#include <boost/…>.	Boost_INCLUDE_DIRS	is	set	for	us	by	FindBoost.

target_link_libraries(toDo ${Boost_LIBRARIES} toDoCore)

The	paths	to	all	of	the	boost	libraries	we	requested,	i.e.	program_options,	are	provided	by	FindBoost	in	the
variable	Boost_LIBRARIES.	We	simply	link	against	the	list	of	libraries	provided.

FindBoost	defines	several	other	variables,	which	are	listed	in	its	documentation.	The	most	important	one,	not	used
here,	is	Boost_FOUND.	If	Boost	has	been	found	then	Boost_FOUND	will	be	true,	otherwise	it	will	be	false.	Since	we
specified	that	Boost	was	REQUIRED	we	know	that	Boost_FOUND	must	be	true	otherwise	CMake's	configuration	step
would	have	failed.	If	Boost	were	not	REQUIRED	then	Boost_FOUND	would	be	an	extremely	important	variable.

If	we	had	chosen	not	to	require	Boost	but	not	changed	anything	else	in	our	CMakeLists.txt	we	would	run	into	trouble
if	Boost	had	not	been	found.	You	would	expect	that	our	code	wouldn't	compile	because	an	include	file	could	not	be
found.	As	it	turns	out	you	won't	actually	get	that	far.	FindBoost	will	set	Boost_INCLUDE_DIRS	to	a	value	indicating	that
Boost	was	not	found.	Because	of	this	the	CMake	configure	step	will	fail	because	we	use	that	variable	as	an	include
directory.	Since	CMake	checks	this	for	us	we	need	to	remember	to	be	careful	when	using	optional	packages.

Choosing	a	Root
Typically	BOOST_ROOT	should	be	the	directory	that	contains	the	include	and	lib	directories	in	which	you	will	find	boost.
Remember	the	boost	headers	will	be	inside	a	boost	directory.	As	you	might	notice	this	is	the	standard	layout	used	on
Unix	and	Linux.	When	the	headers	and	libraries	are	not	arranged	this	way,	as	is	likely	on	Windows,	the
BOOST_INCLUDEDIR	and	BOOST_LIBRARYDIR	should	be	used	instead.

So	right	now	you	are	probably	wondering	what	use	FindBoost	really	is	if	I	had	to	specify	the	root,	or	worse	the
include	and	library	directories.	Well	there	are	a	few	reasons:

Most	importantly	if	Boost	has	been	installed	in	a	standard	location	it	would	have	been	found	without	any
information	being	provided.
It	will	check	that	the	Boost	it	finds	is	the	desired	version,	1.32	or	greater	in	this	case.	Not	all	finders	actually
check	version,	but	when	available	this	feature	is	very	useful	as	incorrect	library	versions	are	caught
immediately	rather	than	later	through	potentially	confusing	compile	errors.
In	the	case	of	Boost	the	finder	will	ensure	the	desired	libraries	are	found.	Since	approximately	90%	of	the
Boost	libraries	are	header	only	some	installs	only	include	the	headers	and	none	of	the	compiled	libraries.
Lastly	even	though	I	specified	my	non-standard	install	locations	for	Boost	in	the	CMakeLists.txt	you	needn't
install	it	there.	Regardless	FindBoost	will	still	find	Boost	if	you	have	it	installed	in	a	standard	location.
Additionally	you	can	set	your	own	location	using	by	setting	the	BOOST_ROOT	variable	using	the	-D	command	line
option	of	cmake	or	by	setting	it	using	the	GUI	or	curses	interface.	Perhaps	most	conveniently	you	can	set	the
BOOST_ROOT	environment	variable	and	not	need	to	tell	CMake	separately.	This,	of	course,	applies	to	the
BOOST_INCLUDEDIR	and	BOOST_LIBRARYDIR	variables,	too.

So	this	leaves	one	question:	does	it	make	sense	to	set	BOOST_ROOT	in	the	CMakeLists.txt?

If	you	are	the	only	one	working	on	the	project	then	it	will	certainly	be	easier	to	set	it	in	the	CMakeLists.txt,	although
you	will	have	to	do	this	for	every	project.	Setting	the	environmental	variable	might	be	easier.

If	you	work	on	a	team	whose	development	machines	are	all	configured	similarly,	or	should	be,	then	setting
BOOST_ROOT	in	the	CMakeLists.txt	is	a	good	idea	because	it	simplifies	things	for	most	developers	and	therefore	provides
and	incentive	for	all	developers	to	use	the	standard	configuration.

CMake Tutorial

71 Chapter 6: Realistically Getting a Boost

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#module:FindBoost


Now	if	you	work	with	a	disparate	group	of	people,	say	on	an	free/open	source	project,	it	makes	less	sense	to	set
BOOST_ROOT	in	the	CMakeLists.txt	as	there	is	likely	no	notion	of	a	standard	development	environment.

Finding	Packages
Since	CMake	ships	with	a	reasonable	number	of	Find	modules	there's	a	good	chance	that	whatever	you	want	to	find
can	be	found	by	simply	using	the	find_package	command.	While	you	should	review	the	documentation	for	that
particular	module	there	are	some	variables	that	you	can	expect	to	be	defined.
Package_FOUND

This	variable	indicates	whether	or	not	the	package	has	been	found.
Package_INCLUDE_DIRS

The	include	directories	for	that	particular	package.	This	variable	should	be	passed	to	the
include_directories()	command.

Package_LIBRARIES

The	full	paths	to	this	package's	libraries.	This	variable	should	be	passed	to	the	target_link_libraries()
command.

Package_DEFINITIONS

Definitions	required	to	compile	code	that	uses	this	package.	This	should	be	passed	to	the	add_definitions()
command.

Documentation	Found
As	mentioned	above	you	can	get	the	documentation	for	FindBoost	by	using	the	cmake	command.	While	this	is
somewhat	convenient	the	terminal	is	not	always	the	best	tool	for	reading	documentation.	There	is	a	slightly	more
useful	variant	of	the	command:	cmake --help-module FindBoost file.	This	allows	you	to	read	the	documentation
however	you	please.

There's	another	convenient	command	that	will	list	all	of	the	available	modules:	cmake --help-modules.	This	will	also
provide	some	documentation	for	each.	Again	you	can	easily	save	this	to	a	file	with	the	command
cmake --help-modules file.

If	you	have	a	Unix/Linux-like	shell	then	you	can	easily	get	a	list	of	all	available	Find	modules.

 > cmake --version

cmake version 2.8.12.1

 > cmake --help-modules | grep -E "^  Find"

  FindALSA

  FindASPELL

  FindAVIFile

  FindArmadillo

  FindBISON

  FindBLAS

  FindBZip2

  FindBoost

  FindBullet

  FindCABLE

  FindCUDA

  FindCURL

  FindCVS

  FindCoin3D

  FindCups

  FindCurses

  FindCxxTest

  FindCygwin

  FindDCMTK

  FindDart

  FindDevIL

  FindDoxygen

  FindEXPAT

  FindFLEX

  FindFLTK

CMake Tutorial

72 Chapter 6: Realistically Getting a Boost



  FindFLTK2

  FindFreetype

  FindGCCXML

  FindGDAL

  FindGIF

  FindGLEW

  FindGLUT

  FindGTK

  FindGTK2

  FindGTest

  FindGettext

  FindGit

  FindGnuTLS

  FindGnuplot

  FindHDF5

  FindHSPELL

  FindHTMLHelp

  FindHg

  FindITK

  FindIcotool

  FindImageMagick

  FindJNI

  FindJPEG

  FindJasper

  FindJava

  FindKDE3

  FindKDE4

  FindLAPACK

  FindLATEX

  FindLibArchive

  FindLibLZMA

  FindLibXml2

  FindLibXslt

  FindLua50

  FindLua51

  FindMFC

  FindMPEG

  FindMPEG2

  FindMPI

  FindMatlab

  FindMotif

  FindOpenAL

  FindOpenGL

  FindOpenMP

  FindOpenSSL

  FindOpenSceneGraph

  FindOpenThreads

  FindPHP4

  FindPNG

  FindPackageHandleStandardArgs

  FindPackageMessage

  FindPerl

  FindPerlLibs

  FindPhysFS

  FindPike

  FindPkgConfig

  FindPostgreSQL

  FindProducer

  FindProtobuf

  FindPythonInterp

  FindPythonLibs

  FindQt

  FindQt3

  FindQt4

  FindQuickTime

  FindRTI

  FindRuby

  FindSDL

  FindSDL_image

  FindSDL_mixer

  FindSDL_net

  FindSDL_sound

CMake Tutorial

73 Chapter 6: Realistically Getting a Boost



  FindSDL_sound

  FindSDL_ttf

  FindSWIG

  FindSelfPackers

  FindSquish

  FindSubversion

  FindTCL

  FindTIFF

  FindTclStub

  FindTclsh

  FindThreads

  FindUnixCommands

  FindVTK

  FindWget

  FindWish

  FindX11

  FindXMLRPC

  FindZLIB

  Findosg

  FindosgAnimation

  FindosgDB

  FindosgFX

  FindosgGA

  FindosgIntrospection

  FindosgManipulator

  FindosgParticle

  FindosgPresentation

  FindosgProducer

  FindosgQt

  FindosgShadow

  FindosgSim

  FindosgTerrain

  FindosgText

  FindosgUtil

  FindosgViewer

  FindosgVolume

  FindosgWidget

  Findosg_functions

  FindwxWidgets

  FindwxWindows

CMake Tutorial

74 Chapter 6: Realistically Getting a Boost


	Table of Contents
	Introduction
	Chapter 1: Getting Started
	Chapter 2: IDE Integration
	Chapter 3: GUI Tool
	Chapter 4: Libraries and Subdirectories
	Chapter 5: Functionally Improved Testing
	Chapter 6: Realistically Getting a Boost

